zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Investigation of the spectrum of a model operator in a Fock space. (English. Russian original) Zbl 1183.81066
Summary: We consider a model operator $H$ corresponding to a quantum system with a nonconserved finite number of particles on a lattice. Based on an analysis of the spectrum of the channel operators, we describe the position of the essential spectrum of $H$. We obtain a Faddeev-type equation for the eigenvectors of $H$. In an erratum [Theor. Math. Phys. 162, No. 2, 254 (2009); translation from Teor. Mat. Fiz. 162, No. 2, 304 (2009)] two misprints have been corrected.

MSC:
81Q10Selfadjoint operator theory in quantum theory, including spectral analysis
81V70Many-body theory; quantum Hall effect
WorldCat.org
Full Text: DOI
References:
[1] G. M. Zhislin, Tr. Moskov. Mat. Obshch., 9, 81--120 (1960).
[2] M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. 4, Analysis of Operators, Acad. Press, New York (1978). · Zbl 0401.47001
[3] S. N. Lakaev and M. É. Muminov, Theor. Math. Phys., 135, 849--871 (2003). · Zbl 1178.81072 · doi:10.1023/A:1024087105686
[4] M. É. Muminov, Theor. Math. Phys., 148, 1236--1250 (2006). · Zbl 1177.81133 · doi:10.1007/s11232-006-0114-5
[5] R. A. Minlos and H. Spohn, ”The three-body problem in radioactive decay: The case of one atom and at most two photons,” in: Topics in Statistical and Theoretical Physics (Amer. Math. Soc. Transl. Ser. 2, Vol. 177, R. L. Dobrushin, ed.), Amer. Math. Soc., Providence, R. I. (1996), pp. 159--193. · Zbl 0881.47049
[6] Yu.V. Zhukov and R. A. Minlos, Theor. Math. Phys., 103, 398--411 (1995). · Zbl 0863.47056 · doi:10.1007/BF02069784
[7] G. R. Yodgorov and M. É. Muminov, Theor. Math. Phys., 144, 1344--1352 (2005). · Zbl 1178.81074 · doi:10.1007/s11232-005-0163-1
[8] T. Kh. Rasulov, Math. Notes, 83, 80--87 (2008). · Zbl 1156.47061 · doi:10.1134/S0001434608010100
[9] M. I. Muminov and T. H. Rasulov, ”The Faddeev equation and essential spectrum of a Hamiltonian in Fock space,” ICTP Preprint IC/2008/027, Abdus Salam Intl. Cent. Theor. Phys., Trieste (2008). · Zbl 1240.81015
[10] T. Kh. Rasulov, Russ. Math., 52, No. 12, 50--59 (2008). · Zbl 1160.81016 · doi:10.3103/S1066369X08120086
[11] S. N. Lakaev and T. Kh. Rasulov, Math. Notes, 73, 521--528 (2003). · Zbl 1059.81059 · doi:10.1023/A:1023207220878
[12] S. N. Lakaev and T. Kh. Rasulov, Funct. Anal. Appl., 37, 69--71 (2003). · Zbl 1023.81007 · doi:10.1023/A:1022980112256
[13] S. Albeverio, S. N. Lakaev, and T. H. Rasulov, J. Stat. Phys., 127, 191--220 (2007). · Zbl 1126.81022 · doi:10.1007/s10955-006-9240-6
[14] T. Kh. Rasulov, Theor. Math. Phys., 152, 1313--1321 (2007). · Zbl 1131.81012 · doi:10.1007/s11232-007-0115-z