×

zbMATH — the first resource for mathematics

The Feynman integral for singular Lagrangians. (English. Russian original) Zbl 1183.81090
Theor. Math. Phys. 1, No. 1, 1-13 (1969); translation from Teor. Mat. Fiz. 1, No. 1, 3-18 (1969).
Summary: A generalization is obtained for the continual Feynman integral, adapted for the quantization of a mechanical system describable by a singular Lagrangian. As an example, the quantization of the Yang-Mills field is considered.

MSC:
81S10 Geometry and quantization, symplectic methods
81Q30 Feynman integrals and graphs; applications of algebraic topology and algebraic geometry
81T13 Yang-Mills and other gauge theories in quantum field theory
PDF BibTeX XML Cite
Full Text: DOI MNR
References:
[1] R. Feynman, Rev. Mod. Phys.,20, 367 (1948). · Zbl 1371.81126 · doi:10.1103/RevModPhys.20.367
[2] P. A. M. Dirac, Can. J. Math.,2, 129 (1950). · Zbl 0036.14104 · doi:10.4153/CJM-1950-012-1
[3] P. A. M. Dirac, Proc. Roy. Soc.,A246, 326 (1958). · Zbl 0080.41402 · doi:10.1098/rspa.1958.0141
[4] P. A. M. Dirac, Proc. Roy. Soc.,A246, 333 (1958). · Zbl 0080.41403 · doi:10.1098/rspa.1958.0142
[5] P. A. M. Dirac, Phys. Rev.,114, 924 (1959). · Zbl 0085.42402 · doi:10.1103/PhysRev.114.924
[6] P. A. M. Dirac, Report at the symposium on Modern Physics at Trieste (June, 1968).
[7] J. Klauder, Thesis at the Fifth International Conference on Gravitation and Relativity, Tbilisi (1968).
[8] A. Likhnerovich, The Theory of Cohesion and Holonomy Groups [in Russian], IL (1960).
[9] R. Feynman, Phys. Rev.,84, 108 (1951). · Zbl 0044.23304 · doi:10.1103/PhysRev.84.108
[10] W. Tobocman, Nuovo Cim.,3, 1213 (1956). · Zbl 0072.21706 · doi:10.1007/BF02785004
[11] C. Garrod, Rev. Mod. Phys.,38, 483 (1966). · Zbl 0192.30403 · doi:10.1103/RevModPhys.38.483
[12] L. D. Landau and E. M. Livshits, Mechanics [in Russian], Fizmatgiz (1958). · Zbl 0081.22207
[13] P. Bergmann, Rev. Mol. Phys.,33, 510 (1961). · Zbl 0098.42501 · doi:10.1103/RevModPhys.33.510
[14] P. Bergmann and I. Goldberg, Phys. Rev.,98, 531 (1955). · Zbl 0065.22803 · doi:10.1103/PhysRev.98.531
[15] C. S. Yang and R. L. Mills, Phys. Rev.,96, 191 (1954). · Zbl 1378.81075 · doi:10.1103/PhysRev.96.191
[16] L. Faddeev and V. Popov, Phys. Lett.,25B 29 (1967).
[17] V. N. Popov and L. D. Faddeev, ?Perturbation theory for gauge invariant fields,? Preprint of ITF, AN UkrSSR, Kiev (1967).
[18] R. Feynman, Acta Phys. Polonica,24, 697 (1963).
[19] B. S. De Witt, Phys. Rev.,162, 1195, 1239 (1967). · Zbl 0161.46501 · doi:10.1103/PhysRev.162.1195
[20] S. Mandelstam, Phys. Rev.,175, 1604 (1968). · doi:10.1103/PhysRev.175.1604
[21] M. Veltman, Nucl. Phys.,B7, 637 (1968). · doi:10.1016/0550-3213(68)90197-1
[22] S. L. Glashow and M. Gell-Mann, Ann. Phys.,15, 437 (1961). · Zbl 0099.43601 · doi:10.1016/0003-4916(61)90193-2
[23] J. Schwinger, Phys. Rev.,125, 1043 (1962). · Zbl 0108.42002 · doi:10.1103/PhysRev.125.1043
[24] V. I. Arnol’d, Lectures 30-42, Lectures on Classical Mechanics [in Russian], Izd. MGU (1968).
[25] R. Jost, Rev. Mod. Phys.,36, 572 (1964). · doi:10.1103/RevModPhys.36.572
[26] R. S. Plais, Mem. Amer. Math. Soc.,22 (1957).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.