zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Synchronization of complex dynamical networks with switching topology: a switched system point of view. (English) Zbl 1183.93032
Summary: We study the synchronization problem for complex dynamical networks with switching topology from a switched system point of view. The synchronization problem is transformed into the stability problem for time-varying switched systems. We address two basic problems: synchronization under arbitrary switching topology, and synchronization via design of switching within a pre-given collection of topologies when synchronization cannot be achieved by using any topology alone in this collection. For both problems, we first establish synchronization criteria for general connection topology. Then, under the condition of simultaneous triangularization of the connection matrices, a common Lyapunov function (for the first problem) and a single Lyapunov and multiple Lyapunov functions (for the second problem) are systematically constructed respectively by those of several lower-dimensional dynamic systems. In order to achieve synchronization using multiple Lyapunov functions, a stability condition and switching law design method for time-varying switched systems are also presented, which avoid the usual non-increasing condition.

MSC:
93A14Decentralized systems
93B12Variable structure systems
93D99Stability of control systems
94C10Switching theory, application of Boolean algebra; Boolean functions
WorldCat.org
Full Text: DOI
References:
[1] Arenas, A.; Diaz-Guilera, A.; Kurths, J.; Moreno, Y.; Zhou, C.: Synchronization in complex networks, Physics reports 469, No. 3, 93-153 (2008)
[2] Barahona, M.; Pecora, L. M.: Synchronization in small-world systems, Physical review letters 89, No. 5, 054101.1-054101.4 (2002)
[3] Belykh, I.; Belykh, V. N.; Hasler, M.: Blinking model and synchronization in small-world networks with a time-varying coupling, Physica D 195, No. 1-2, 188-206 (2004) · Zbl 1098.82621 · doi:10.1016/j.physd.2004.03.013
[4] Boccaletti, S.; Latora, V.; Moreno, Y.; Chavez, M.; Hwang, D. U.: Complex networks: structure and dynamics, Physics reports 424, No. 4-5, 175-308 (2006)
[5] Chavez, M.; Hwang, D. U.; Amann, A.; Hentschel, H.; Boccaletti, S.: Synchronization is enhanced in weighted complex networks, Physical review letters 94, No. 21, 218701.1-218701.4 (2005)
[6] Comellas, F.; Gago, S.: Synchronizability of complex networks, Journal of physics A: mathematical and theoretical 40, 4483-4492 (2007) · Zbl 1189.90030 · doi:10.1088/1751-8113/40/17/006
[7] Delellis, P.; Dibernardo, M.; Garofalo, F.: Novel decentralized adaptive strategies for the synchronization of complex networks, Automatica 45, No. 5, 1312-1318 (2009) · Zbl 1162.93361 · doi:10.1016/j.automatica.2009.01.001
[8] Gao, H.; Lam, J.; Chen, G.: New criteria for synchronization stability of general complex dynamical networks with coupling delays, Physics letters A 360, 263-273 (2006) · Zbl 1236.34069
[9] Hill, D.J., & Chen, G. (2006) Power systems as dynamic networks. In Proceedings of IEEE international symposium on circuits and systems (pp. 722-725). Kos, Greece
[10] Ihle, I. F.; Arcak, M.; Fossen, T. I.: Passivity-based designs for synchronized path-following, Automatica 43, No. 9, 1508-1518 (2007) · Zbl 1128.93331 · doi:10.1016/j.automatica.2007.02.018
[11] Kundur, P.; Paserba, J.; Ajjarapu, V.; Anderson, G.; Bose, A.; Canizares, C.; Hatziargyriou, N.: Definition and classification of power system stability, IEEE transactions on power systems 19, No. 2, 1387-1401 (2004)
[12] Liberzon, D.: Switching in systems and control, (2003) · Zbl 1036.93001
[13] Lorand, C.; Bauer, P. H.: On synchronization errors in networked feedback systems, IEEE transactions on circuits and systems-I 53, 2306-2317 (2006)
[14] Mastellone, S., Lee, D., & Spong, M.W. (2006) Master-slave synchronization with switching communication through passive model-based control design. In Proceedings of American control conference (pp. 3203-3208)
[15] Nishikawa, T.; Motter, A. E.: Maximum performance at minimum cost in network synchronization, Physics D 224, 77-89 (2006) · Zbl 1117.34048 · doi:10.1016/j.physd.2006.09.007
[16] Olfati-Saber, R.; Murray, R. M.: Consensus problems in networks of agents with switching topology and time-delays, IEEE transactions on automatic control 49, 1520-1533 (2004)
[17] Papachristodoulou, A., & Jadbabaie, A. (2005) Synchronization in oscillator networks: switching topologies and non-homogeneous delays. In Proceedings of IEEE conference on decision and control (pp. 5692-5697)
[18] Pecora, L. M.; Carroll, T. L.: Master stability functions for synchronized coupled systems, Physics review letters 80, 2109-2112 (1998)
[19] Pham, Q. C.; Slotine, J. J.: Stable concurrent synchronization in dynamic system networks, Neural networks 20, No. 1, 62-77 (2007) · Zbl 1158.68449 · doi:10.1016/j.neunet.2006.07.008
[20] Pikovsky, A.; Rosenblum, M.; Kurths, J.: Synchronization: A universal concept in nonlinear sciences, (2001) · Zbl 0993.37002
[21] Rangarajan, G.; Ding, M.: Stability of synchronized chaos in coupled dynamical systems, Physics letters A 296, 204-209 (2002) · Zbl 0994.37026 · doi:10.1016/S0375-9601(02)00051-8
[22] Stilwell, D. J.; Bollt, E. M.; Roberson, D. G.: Sufficient conditions for fast switching synchronization in time-varying network topologies, SIAM journal of applied dynamical systems 5, 140-156 (2006) · Zbl 1145.37345 · doi:10.1137/050625229
[23] Sorrentino, F.; Bernardo, M.; Cuellar, G. H.; Boccaletti, S.: Synchronization in weighted scale-free networks with degree-degree correlation, Physica D 224, 123-129 (2006) · Zbl 1117.34049 · doi:10.1016/j.physd.2006.09.030
[24] Strogatz, S. H.: Exploring complex networks, Nature 410, 268-276 (2001)
[25] Sun, Y.; Wang, L.; Xie, G.: Average consensus in networks of dynamic agents with switching topologies and multiple time-varying delays, Systems & control letters 57, 175-183 (2008) · Zbl 1133.68412 · doi:10.1016/j.sysconle.2007.08.009
[26] Tanner, H. G.; Jadbabaie, A.; Pappas, G. J.: Flocking in fixed and switching networks, IEEE transactions on automatic control 52, 863-868 (2007)
[27] Wang, X.; Chen, G.: Synchronization in small-world dynamical networks, International journal of bifurcation and chaos 12, No. 1, 187-192 (2002)
[28] Wang, X.; Chen, G.: Synchronization in scale-free dynamical networks: robustness and fragility, IEEE transactions on circuits and systems I 49, No. 1, 54-62 (2002)
[29] Wu, C. W.: Synchronization in complex networks of nonlinear dynamical systems, (2007) · Zbl 1135.34002
[30] Zhou, J.; Lu, J.; Lv{}, J.: Adaptive synchronization of an uncertain complex dynamical network, IEEE transactions on automatic control 51, 652-656 (2006)