Global stability of two-group SIR model with random perturbation. (English) Zbl 1184.34064

The authors study a two-group SIR model introduced by H. Guo, M. Y. Li and Z. Shuai [Can. Appl. Math. Q. 14, No. 3, 259–284 (2006; Zbl 1148.34039)] with respect to white noise stochastic perturbations around its positive endemic equilibrium.
They prove a stability result given in Theorem 4.3 which show that the endemic equilibrium is stochastically asymptotically stable in the large. The proof of this theorem is based on a Lyapunov function.
Some suggestive numerical simulations are included.


34F05 Ordinary differential equations and systems with randomness
34D23 Global stability of solutions to ordinary differential equations
92D30 Epidemiology
Full Text: DOI


[1] Guo, H. B.; Li, M. Y.; Shuai, Z., Global stability of the endemic equilibrium of multigroup SIR epidemic models, Can. Appl. Math. Q., 14, 259-284 (2006) · Zbl 1148.34039
[2] Kermack, W. O.; McKendrick, A. G., Contributions to the mathematical theory of epidemics (Part I), Proc. R. Sm. A, 115, 700-721 (1927) · JFM 53.0517.01
[3] Meng, X. Z.; Chen, L. S., The dynamics of a new SIR epidemic model concerning pulse vaccination strategy, Appl. Math. Comput., 197, 528-597 (2008) · Zbl 1131.92056
[4] Zhang, F. P.; Li, Z. Z.; Zhang, F., Global stability of an SIR epidemic model with constant infectious period, Appl. Math. Comput., 199, 285-291 (2008) · Zbl 1136.92336
[5] Hsu, Sze-Bi; Roeger, Lih-Ing W., The final size of a SARS epidemic model without quarantine, J. Math. Anal. Appl., 333, 557-566 (2007) · Zbl 1113.92055
[6] Zhang, Z. H.; Peng, J. G., A SIRS epidemic model with infection-age dependence, J. Math. Anal. Appl., 331, 1396-1414 (2007) · Zbl 1116.35024
[7] Wei, H. M.; Li, X. Z.; Martcheva, M., An epidemic model of a vector-borne disease with direct transmission and time delay, J. Math. Anal. Appl., 342, 895-908 (2008) · Zbl 1146.34059
[8] Roy, M.; Holt, R. D., Effects of predation on host-pathogen dynamics in SIR models, Theor. Popul. Biol., 73, 319-331 (2008) · Zbl 1209.92054
[9] Tchuenche, J. M.; Nwagwo, A.; Levins, R., Global behaviour of an SIR epidemic model with time delay, Math. Methods Appl. Sci., 30, 733-749 (2007) · Zbl 1112.92055
[10] Zhang, T. L.; Teng, Z. D., Permanence and extinction for a nonautonomous SIRS epidemic model with time delay, Appl. Math. Model., 33, 1058-1071 (2009) · Zbl 1168.34358
[11] Beretta, E.; Hara, T.; Ma, W.; Takeuchi, Y., Global asymptotic stability of an SIR epidemic model with distributed time delay, Nonlinear Anal., 47, 4107-4115 (2001) · Zbl 1042.34585
[12] Lajmanovich, A.; York, J. A., A deterministic model for gonorrhea in a nonhomogeneous population, Math. Biosci., 28, 221-236 (1976) · Zbl 0344.92016
[13] Beretta, E.; Capasso, V., Global stability results for a multigroup SIR epidemic model, (Hallam, T. G.; Gross, L. J.; Levin, S. A., Mathematical Ecology (1986), World Scientific: World Scientific Singapore), 317-342 · Zbl 0684.92015
[14] Hethcote, H. W., An immunization model for a heterogeneous population, Theor. Popul. Biol., 14, 338-349 (1978) · Zbl 0392.92009
[15] Rass, L.; Radcliffe, J., Global asymptotic convergence results for multitype models, Int. J. Appl. Math. Comput. Sci., 10, 63-79 (2000) · Zbl 0978.92026
[16] Koide, C.; Seno, H., Sex ratio features of two-group SIR model for asymmetric transmission of heterosexual disease, Math. Comput. Model., 23, 67-91 (1996) · Zbl 0846.92025
[17] Mao, X.; Marion, G.; Renshaw, E., Asymptotic behaviour of the stochastic Lotka-Volterra model, J. Math. Anal. Appl., 287, 141-156 (2003) · Zbl 1048.92027
[18] Mao, X.; Marion, G.; Renshaw, E., Environmental noise suppresses explosion in population dynamics, Stochastic Process. Appl., 97, 95-110 (2002) · Zbl 1058.60046
[19] Mao, X., Stochastic Differential Equations and Applications (1997), Horwood: Horwood Chichester · Zbl 0874.60050
[20] Arnolld, L.; Horsthemke, W.; Stuxki, J. W., The influence of external real and white noise on the Lotka-Volterra model, Biomed. J., 21, 451-471 (1976) · Zbl 0433.92019
[21] Khasminskii, R. Z.; Klerbaner, F. C., Long term behavior of solution of the Lotka-Volterra system under small random perturbations, Ann. Appl. Probab., 11, 952-963 (2001) · Zbl 1061.34513
[22] Bahar, A.; Mao, X., Stochastic delay Lotka-Volterra model, J. Math. Anal. Appl., 292, 364-380 (2004) · Zbl 1043.92034
[23] Jiang, D. Q.; Shi, N. Z., A note on nonautonomous Logistic equation with random perturbation, J. Math. Anal. Appl., 303, 164-172 (2005) · Zbl 1076.34062
[24] Jiang, D. Q.; Shi, N. Z.; Li, X. Y., Global stability and stochastic permanence of a non-autonomous logistic equation with random perturbation, J. Math. Anal. Appl., 303, 164-172 (2008) · Zbl 1076.34062
[25] Gard, T. C., Persistence in stochastic food web models, Bull. Math. Biol., 46, 357-370 (1984) · Zbl 0533.92028
[26] Imhof, L.; Walcher, S., Exclusion and persistence in deterministic and stochastic chemostat models, J. Differential Equations, 217, 26-53 (2005) · Zbl 1089.34041
[27] Dalal, N.; Greenhalgh, D.; Mao, X. R., A stochastic model for internal HIV dynamics, J. Math. Anal. Appl., 341, 1084-1101 (2008) · Zbl 1132.92015
[28] Dalal, N.; Greenhalgh, D.; Mao, X. R., A stochastic model of AIDS and condom use, J. Math. Anal. Appl., 325, 36-53 (2007) · Zbl 1101.92037
[29] Tornatore, E.; Buccellato, S. M.; Vetro, P., Stability of a stochastic SIR system, Phys. A, 354, 111-126 (2005)
[30] Carletti, M., On the stability properties of a stochastic model for phage-bacteria interaction in open marine environment, Math. Biosci., 175, 117-131 (2002) · Zbl 0987.92027
[31] Beretta, E.; Kolmanovskii, V.; Shaikhet, L., Stability of epidemic model with time delays influenced by stochastic perturbations, Math. Comput. Simulation, 45, 269-277 (1998) · Zbl 1017.92504
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.