×

zbMATH — the first resource for mathematics

\(C^*\)-algebras generated by semigroups. (English. Russian original) Zbl 1184.46053
Russ. Math. 53, No. 10, 61-63 (2009); translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2009, No. 10, 68-71 (2009).
Summary: We study \(C^*\)-algebras generated by a commuting family of isometric operators. Such algebras naturally generalize the Toeplitz algebra. We investigate \(*\)-automorphisms and ideals of \(C^*\)-algebras generated by semigroups.

MSC:
46L05 General theory of \(C^*\)-algebras
47L80 Algebras of specific types of operators (Toeplitz, integral, pseudodifferential, etc.)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] S. Adji and I. Raeburn, ”The Ideal Structure of ToeplitzAlgebras,” Integr. Equat. Oper. Theory 48, 281–293 (2004). · Zbl 1069.46034 · doi:10.1007/s00020-001-1174-4
[2] K. R. Davidson and G. Popescu, ”Noncommutative Disk Algebras for Semigroups,” Canad. J. Math. 50(2), 290–311 (1998). · Zbl 0932.46066 · doi:10.4153/CJM-1998-015-5
[3] R. G. Douglas, ”On the C*-algebra of a One-Parameter Semigroup of Isometries,” ActaMath. 128, 143–152 (1972). · Zbl 0232.46063
[4] G. K. Pedersen, C*-algebras and their Automorphism Groups (Academic Press, New York, 1979). · Zbl 0416.46043
[5] S. Y. Jang, ”Generalized Toeplitz Algebra of a Certain Non-Amenable Semigroup,” Bull. Korean Math. Soc. 43(2), 333–341 (2006). · Zbl 1103.46037 · doi:10.4134/BKMS.2006.43.2.333
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.