zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Stochastic convergence analysis and parameter selection of the standard particle swarm optimization algorithm. (English) Zbl 1184.68621
Summary: This letter presents a formal stochastic convergence analysis of the standard particle swarm optimization (PSO) algorithm, which involves with randomness. By regarding each particle’s position on each evolutionary step as a stochastic vector, the standard PSO algorithm determined by non-negative real parameter tuple $\{\omega ,c_{1},c_{2}\}$ is analyzed using stochastic process theory. The stochastic convergent condition of the particle swarm system and corresponding parameter selection guidelines are derived.

68W20Randomized algorithms
Full Text: DOI
[1] A. Carlisle, G. Dozier, An off-the-shelf PSO, in: Proceedings of the Workshop on Particle Swarm Optimization, Indianapolis, USA, 2001
[2] Clerc, M.; Kennedy, J.: The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE transactions on evolutionary computation 6, No. 1, 58-73 (2002)
[3] J. Kennedy, R.C. Eberhart, Particle swarm optimization, in: Proc. IEEE International Conference on Neural Networks, Piscataway, NJ, 1995, pp. 1942 -- 1948
[4] E. Ozcan, C.K. Mohan, Analysis of a simple particle swarm optimization system, in: Intelligent Engineering Systems through Artificial Neural Networks, 1998, pp. 253 -- 258
[5] E. Ozcan, C.K. Mohan, Particle swarm optimization: surfing the waves, in: Proc. IEEE Congress on Evolutionary Computation (CEC 1999), Washington, DC, USA, 1999, pp. 1939 -- 1944
[6] Y. Shi, R.C. Eberhart, A modified particle swarm optimizer, in: Proceedings of the IEEE Congress on Evolutionary Computation (CEC 1998), Piscataway, NJ, 1998, pp. 69 -- 73
[7] Trelea, I. C.: The particle swarm optimization algorithm: convergence analysis and parameter selection. Information processing letters 85, 317-325 (2003) · Zbl 1156.90463
[8] F. van den Bergh, An analysis of particle swarm optimizers, PhD Dissertation, University of Pretoria, Nov. 2001
[9] K. Yasuda, A. Ide, N. Iwasaki, Adaptive particle swarm optimization, in: Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, 2003, pp. 1554 -- 1559