×

An approximate deconvolution model for large-eddy simulation with application to incompressible wall-bounded flows. (English) Zbl 1184.76530

Summary: The approximate deconvolution model (ADM) for the large-eddy simulation of incompressible flows is detailed and applied to turbulent channel flow. With this approach an approximation of the unfiltered solution is obtained by repeated filtering. Given a good approximation of the unfiltered solution, the nonlinear terms of the filtered Navier-Stokes equations can be computed directly. The effect of nonrepresented scales is modeled by a relaxation regularization involving a secondary filter operation. Large-eddy simulations are performed for incompressible channel flow at Reynolds numbers based on the friction velocity and the channel half-width of \(Re_\tau = 180\) and \(Re_\tau= 590\). Both simulations compare well with direct numerical simulation (DNS) data and show a significant improvement over results obtained with classical subgrid scale models such as the standard or the dynamic Smagorinsky model. The computational cost of ADM is lower than that of dynamic models or the velocity estimation model.

MSC:

76F65 Direct numerical and large eddy simulation of turbulence
76D05 Navier-Stokes equations for incompressible viscous fluids
76F40 Turbulent boundary layers
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Leonard A., Adv. Geophys. 18 pp 237– (1974) · doi:10.1016/S0065-2687(08)60464-1
[2] DOI: 10.1017/S002211207900001X · Zbl 0394.76052 · doi:10.1017/S002211207900001X
[3] DOI: 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2 · doi:10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
[4] DOI: 10.1063/1.858675 · Zbl 0925.76242 · doi:10.1063/1.858675
[5] DOI: 10.1063/1.858586 · doi:10.1063/1.858586
[6] DOI: 10.1063/1.869495 · doi:10.1063/1.869495
[7] DOI: 10.1063/1.870238 · Zbl 1149.76442 · doi:10.1063/1.870238
[8] DOI: 10.1063/1.857955 · Zbl 0825.76334 · doi:10.1063/1.857955
[9] DOI: 10.1063/1.869334 · doi:10.1063/1.869334
[10] DOI: 10.1063/1.870095 · Zbl 1147.76376 · doi:10.1063/1.870095
[11] DOI: 10.1063/1.869867 · Zbl 1147.76506 · doi:10.1063/1.869867
[12] DOI: 10.1017/S0022112092004361 · Zbl 0825.76272 · doi:10.1017/S0022112092004361
[13] DOI: 10.1016/0021-9991(92)90324-R · Zbl 0759.65006 · doi:10.1016/0021-9991(92)90324-R
[14] DOI: 10.1007/BF01391351 · doi:10.1007/BF01391351
[15] DOI: 10.1146/annurev.fl.28.010196.000401 · doi:10.1146/annurev.fl.28.010196.000401
[16] DOI: 10.1006/jcph.1998.6112 · Zbl 0930.76041 · doi:10.1006/jcph.1998.6112
[17] DOI: 10.1006/jcph.1995.1077 · Zbl 0822.76069 · doi:10.1006/jcph.1995.1077
[18] DOI: 10.1006/jcph.1998.6060 · Zbl 0913.76072 · doi:10.1006/jcph.1998.6060
[19] DOI: 10.1017/S002211209200048X · Zbl 0825.76312 · doi:10.1017/S002211209200048X
[20] DOI: 10.1063/1.869966 · Zbl 1147.76463 · doi:10.1063/1.869966
[21] DOI: 10.1063/1.870239 · Zbl 1149.76460 · doi:10.1063/1.870239
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.