×

Coupling haemodynamics with vascular wall mechanics and mechanobiology to understand intracranial aneurysms. (English) Zbl 1184.76920

Summary: Arteries exhibit a remarkable ability to adapt in response to sustained alterations in haemodynamic loading, to heal in response to injuries, and to compensate in response to diverse disease conditions. Nevertheless, such compensatory adaptations are limited and many vascular disorders, if untreated, lead to significant morbidity or mortality. Parallel advances in vascular biology, medical imaging, biomechanics and computational methods promise to provide increased insight into many arterial diseases, including intracranial aneurysms. In particular, although it may be possible to identify useful clinical correlations between either the blood flow patterns within or the shape of aneurysms and their rupture-potential, our ultimate goal should be to couple studies of haemodynamics with those of wall mechanics and the underlying mechanobiology so that we can understand better the mechanisms by which aneurysms develop, enlarge, and rupture and thereby identify better methods of treatment. This article presents one such approach to fluid-solid-growth (FSG) modelling of intracranial aneurysms.

MSC:

76Z05 Physiological flows
92C10 Biomechanics
PDF BibTeX XML Cite
Full Text: DOI Link

References:

[1] DOI: 10.1227/01.NEU.0000223495.39240.9A
[2] Alberts B., Molecular biology of the cell (2002)
[3] Akkas N., Biomechanical transport processes pp 303– (1990)
[4] DOI: 10.1227/00006123-198905000-00011
[5] DOI: 10.1007/s10659-005-9004-6 · Zbl 1197.74072
[6] DOI: 10.1115/1.2132374
[7] DOI: 10.1007/s10439-007-9322-x
[8] DOI: 10.1016/j.cma.2006.06.018 · Zbl 1127.74026
[9] DOI: 10.1016/S1050-1738(03)00065-3
[10] DOI: 10.3171/jns.1998.89.3.0431
[11] DOI: 10.1227/00006123-198508000-00007
[12] DOI: 10.1046/j.1365-2818.1996.840642.x
[13] Canham P. B., Neurological Research 21 pp 618– (1999)
[14] Capers Q., Hypertension 30 pp 1397– (1997)
[15] Cardamone L., Biomechanics and Modeling in Mechanobiology (2009)
[16] Cebral J. R., Proceedings of SPIE – International Society for Optical Engineering 5369 pp 319– (2004)
[17] Cebral J. R., American Journal of Neuroradiology 26 pp 2550– (2005)
[18] DOI: 10.1016/j.jbiomech.2005.12.009
[19] Chien S., Hypertension 31 pp 162– (1998)
[20] Davies P. F., Physiological Review 75 pp 519– (1995)
[21] Fawcett D. W., Bloom and Fawcett – a textbook of histology (1986)
[22] DOI: 10.1016/j.cma.2005.11.011 · Zbl 1126.76029
[23] Figueroa C. A., Computer Methods in Applied Mechanics and Engineering 198 pp 45– (2009)
[24] DOI: 10.1161/01.STR.0000140636.30204.da
[25] DOI: 10.1016/S0024-3205(98)00272-0
[26] DOI: 10.1016/S0962-8924(03)00057-6
[27] DOI: 10.1179/016164106X14973
[28] DOI: 10.1115/1.2800858
[29] DOI: 10.1115/1.1406131
[30] Humphrey J. D., Cardiovascular solid mechanics: cells, tissues, and organs (2002)
[31] DOI: 10.1007/s12013-007-9002-3
[32] DOI: 10.1023/A:1010989418250 · Zbl 0973.92016
[33] DOI: 10.1142/S0218202502001714 · Zbl 1021.74026
[34] DOI: 10.1146/annurev.bioeng.10.061807.160439
[35] DOI: 10.1016/0021-9290(75)90074-3
[36] DOI: 10.3174/ajnr.A1180
[37] DOI: 10.1242/dev.00223
[38] Kataoka K., Stroke 30 pp 1396– (1999)
[39] DOI: 10.1227/01.NEU.0000180812.77621.6C
[40] DOI: 10.1016/j.jtbi.2007.03.009
[41] DOI: 10.1115/1.2965597
[42] Kucharz E. J., The collagens: biochemistry and pathophysiology (1992)
[43] DOI: 10.1016/0021-9290(96)00010-3
[44] Langille B. L., Journal of Cardiovascular Pharmacology 21 pp S11– (1993)
[45] DOI: 10.1016/0163-7258(94)00071-A
[46] DOI: 10.1111/j.1365-2796.2006.01624.x
[47] Ley K., Hemostasis and thrombosis pp 691–, 5. ed. (2006)
[48] DOI: 10.1159/000025570
[49] DOI: 10.1016/S0002-9149(02)03143-0
[50] DOI: 10.1016/j.jacc.2006.08.011
[51] DOI: 10.1115/1.2401187
[52] DOI: 10.1001/jama.282.21.2035
[53] DOI: 10.1113/expphysiol.2005.030130
[54] DOI: 10.1038/ncb1216
[55] DOI: 10.1146/annurev.genom.8.080706.092303
[56] DOI: 10.1007/s004010050694
[57] DOI: 10.1073/pnas.75.1.451
[58] DOI: 10.3171/jns.2004.101.6.1018
[59] Peters D. G., Stroke 32 pp 1036– (2001)
[60] Resnick N., FASEB Journal 9 pp 874– (1995)
[61] DOI: 10.1006/jmcc.1996.0023
[62] DOI: 10.1006/jmcc.1996.0480
[63] Ruigrok Y. M., Lancet Neurology 4 pp 179– (2005)
[64] Ruiz D. S.M., American Journal of Neuroradiology 27 pp 504– (2006)
[65] DOI: 10.1114/1.208
[66] Satoh T., American Journal of Neuroradiology 26 pp 2010– (2005)
[67] Scott S., Canadian Journal of Physiology and Pharmacology 50 pp 328– (1972)
[68] DOI: 10.1016/S0021-9290(01)00002-1
[69] DOI: 10.1080/10255840108908009
[70] DOI: 10.1146/annurev.fluid.40.111406.102126 · Zbl 1157.76061
[71] DOI: 10.1080/01495739708936698
[72] DOI: 10.1016/S0021-9290(99)00030-5
[73] Simkins T. E., Letter of Application in Engineering Science 1 pp 85– (1973)
[74] DOI: 10.1161/01.STR.0000144648.89172.0f
[75] DOI: 10.1161/01.STR.0000177877.88925.06
[76] DOI: 10.1007/BF02058357
[77] Strauss B. H., American Journal of Respiratory Cell and Molecular Biology 22 pp 1– (2000)
[78] Strauss B. H., Circulation Research 79 pp 541– (1996)
[79] Steinman C. A., American Journal of Neuroradiology 24 pp 559– (2003)
[80] DOI: 10.1115/1.3005109
[81] DOI: 10.1098/rsif.2008.0254
[82] Valentin A., Philosophical Transactions of the Royal Society A (2009)
[83] Valentin A., Journal of Biomechanical Engineering (2009)
[84] DOI: 10.1016/j.cma.2005.04.014 · Zbl 1175.76098
[85] DOI: 10.1002/bdrc.20111
[86] DOI: 10.1007/s10237-007-0115-9
[87] DOI: 10.1007/s10237-004-0052-9
[88] DOI: 10.1080/10255840801949793
[89] Yong-Zhong G., Neurology Research 12 pp 249– (1990)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.