zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Controllability and observability of Boolean control networks. (English) Zbl 1184.93014
Summary: The controllability and observability of Boolean control networks are investigated. After a brief review on converting a logic dynamics to a discrete-time linear dynamics with a transition matrix, some formulas are obtained for retrieving network and its logical dynamic equations from this network transition matrix. Based on the discrete-time dynamics, the controllability via two kinds of inputs is revealed by calculating the corresponding reachable sets precisely. Necessary and sufficient conditions for the observability are developed.

94C10Switching theory, application of Boolean algebra; Boolean functions
Full Text: DOI
[1] Akutsu, T.; Hayashida, M.; Ching, W.; Ng, M. K.: Control of Boolean networks: hardness results and algorithms for tree structured networks, Journal of theoretical biology 244, 670-679 (2007)
[2] Akutsu, T.; Miyano, S.; Kuhara, S.: Inferring qualitative relations in genetic networks and metabolic pathways, Bioinformatics 16, 727-773 (2000)
[3] Albert, R.; Barabasi, A. L.: Dynamics of complex systems: scaling laws or the period of Boolean networks, Physical review letters 84, 5660-5663 (2000)
[4] Albert, R.; Othmer, H. G.: The topology and signature of the regulatory interactions predict the expression pattern of the segment polarity genes in drospphila melanogaster, Journal of theoretical biology 223, No. 1, 1-18 (2003)
[5] Aldana, M.: Boolean dynamics of networks with scale-free topology, Physica D 185, 45-66 (2003) · Zbl 1039.94016 · doi:10.1016/S0167-2789(03)00174-X
[6] Cheng, D. (2007). Semi-tensor product of matrices and its applications -- A survey. In: Proc. ICCM 2007. Vol. 3 (641-668)
[7] Cheng, D.: Input-state approach to Boolean networks, IEEE transactions on neural network 20, No. 3, 512-521 (2009)
[8] Cheng, D.; Hu, X.; Wang, Y.: Non-regular feedback linearization of nonlinear systems via a normal form algorithm, Automatica 40, No. 3, 439-447 (2004) · Zbl 1039.93007 · doi:10.1016/j.automatica.2003.10.014
[9] Cheng, D., & Qi, H. (2009). A linear representation of dynamics of Boolean networks. IEEE Transactions on Automatic Control, in press (preprint: http://lsc.amss.ac.cn/¬†dcheng) · Zbl 1184.93014
[10] Data, A.; Choudhary, A.; Bittner, M. L.; Dougherty, E.: External control in Markovian genetic regulatory networks, Machine learning 52, 169-191 (2003) · Zbl 1039.68161 · doi:10.1023/A:1023909812213
[11] Data, A.; Choudhary, A.; Bittner, M. L.; Dougherty, E.: External control in Markovian genetic regulatory networks: the imperfect information case, Bioinformatics 20, 924-930 (2004)
[12] Drossel, B.; Mihaljev, T.; Greil, F.: Number and length of attractors in a critical kauffman model with connectivity one, Physical review letters 94, 088701 (2005)
[13] Harris, S. E.; Sawhill, B. K.; Wuensche, A.; Kauffman, S.: A model of transcriptional regulatory networks based on biases in the observed regulation rules, Complexity 7, 23-40 (2002)
[14] Heidel, J.; Maloney, J.; Farrow, J.; Rogers, J.: Finding cycles in synchronous Boolean networks with applications to biochemical systems, International journal of bifurcation and chaos 13, No. 3, 535-552 (2003) · Zbl 1056.37013 · doi:10.1142/S0218127403006765
[15] Huang, S.: Regulation of cellular states in mammalian cells from a genomewide view, Gene regulation and metabolism, 181-220 (2002)
[16] Huang, S.; Ingber, I.: Shape-dependent control of cell growth, differentiation, and apotosis: switching between attractors in cell regulatory networks, Exp. cell res. 261, 91-103 (2000)
[17] Kauffman, S. A.: Metabolic stability and epigenesis in randomly constructed genetic nets, Journal of theoretical biology 22, 437-467 (1969)
[18] Kauffman, S. A.: The origins of order: self-organization and selection in evolution, (1993)
[19] Kauffman, S. A.: At home in the universe, (1995)
[20] Pal, R.; Datta, A.; Bittner, M. L.; Dougherty, E. R.: Intervention in context-sensitive probabilistic Boolean networks, Bioinformatics 21, 1211-1218 (2005)
[21] Pal, R.; Datta, A.; Bittner, M. L.; Dougherty, E. R.: Optimal infinitehorizon control for probabilistic Boolean networks, IEEE transactions on signal process 54, 2375-2387 (2006)
[22] Waldrop, M. M.: Complexity, (1992)