zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Delay-dependent robust stability analysis for Markovian jumping stochastic Cohen-Grossberg neural networks with discrete interval and distributed time-varying delays. (English) Zbl 1184.93093
Summary: The global asymptotical stability analysis problem is considered for a class of Markovian jumping stochastic Cohen-Grossberg neural networks with discrete interval and distributed delays. The parameter uncertainties are assumed to be norm bounded and the discrete delay is assumed to be time-varying and belong to a given interval, which means that the lower and upper bounds of interval time-varying delays are available. An alternative delay-dependent stability analysis result is established based on the Linear Matrix Inequality (LMI) technique, which can easily be checked by utilizing the numerically efficient Matlab LMI toolbox. Neither system transformation nor free weight matrix via Newton-Leibniz formula is required. Two numerical examples are provided to show that the proposed results significantly improve the allowable upper and lower bounds of delays over some existing results in the literature.

MSC:
93D09Robust stability of control systems
60J75Jump processes
92B20General theory of neural networks (mathematical biology)
34B45Boundary value problems for ODE on graphs and networks
WorldCat.org
Full Text: DOI
References:
[1] Cohen, M. A.; Grossberg, S.: Absolute stability of global pattern formation and parallel memory storage by competitive neural networks. IEEE trans. Syst. man cybern. 13, 815-826 (1983) · Zbl 0553.92009
[2] Arik, S.; Orman, Z.: Global stability analysis of Cohen--Grossberg neural networks with time-varying delays. Phys. lett. A 341, 410-421 (2005) · Zbl 1171.37337
[3] Chen, T.; Rong, L.: Delay-independent stability analysis of Cohen--Grossberg neural networks. Phys. lett. A 317, 436-449 (2003) · Zbl 1030.92002
[4] Yuan, K.; Cao, J.: An analysis of global asymptotic stability of delayed Cohen--Grossberg neural networks via nonsmooth analysis. IEEE trans. Circuits syst. I, reg. Papers 52, 1854-1861 (2005)
[5] Ji, C.; Zhang, H. G.; Wei, Y.: LMI approach for global robust stability of Cohen--Grossberg neural networks with multiple delays. Neurocomputing 71, 475-485 (2008)
[6] Rong, L. B.: LMI-based criteria for robust stability of Cohen--Grossberg neural networks with delays. Phys. lett. A 339, 63-73 (2005) · Zbl 1137.93401
[7] Wu, W.; Cui, B. T.; Lou, X. Y.: Some criteria for asymptotic stability of Cohen--Grossberg neural networks with time varying delays. Neurocomputing 70, 1085-1088 (2007)
[8] Xiong, W.; Xu, B.: Some criteria for robust stability of Cohen--Grossberg neural networks with delays. Chaos solitons fractals 36, 1357-1365 (2008) · Zbl 1183.34074
[9] Wang, Z.; Liu, Y.; Li, M.; Liu, X.: Stability analysis for stochastic Cohen--Grossberg neural networks with mixed time delays. IEEE trans. Neural netw. 17, 814-820 (2006)
[10] Zhu, E.; Zhang, H.; Wang, Y.; Zou, J.; Yu, Z.; Hou, Z.: Pth moment exponential stability of stochastic Cohen--Grossberg neural networks with time-varying delays. Neural process. Lett. 26, 191-200 (2007) · Zbl 05537548
[11] Zhang, H.; Wang, Y.: Stability analysis of Markovian jumping stochastic cohengrossberg neural networks with mixed time delays. IEEE trans. Neural netw. 19, 366-370 (2008)
[12] W. Feng, S.X. Yang, W. Fu, H. Wu, Robust stability analysis of uncertain stochastic neural networks with interval time-varying delay, Chaos Solitons Fractals, in press (doi:10.1016/j.chaos.2008.01.024) · Zbl 1198.93157
[13] Rakkiyappan, R.; Balasubramaniam, P.; Lakshmanan, S.: Robust stability results for uncertain stochastic neural networks with discrete interval and distributed time-varying delays. Phys. lett. A 372, 5290-5297 (2008) · Zbl 1223.92001
[14] Zhang, J.; Shi, P.; Qiu, J.: Novel robust stability criteria for uncertain stochastic Hopfield neural networks with time-varying delays. Nonlinear anal. RWA 8, 1349-1357 (2007) · Zbl 1124.34056
[15] He, Y.; Liu, G. P.; Rees, D.; Wu, M.: Stability analysis for neural networks with time-varying interval delay. IEEE trans. Neural netw. 18, 1850-1854 (2007)
[16] He, Y.; Wang, Q. G.; Wu, M.: LMI-based stability criteria for neural networks with multiple time-varying delays. Physica D 212, 126-136 (2005) · Zbl 1097.34054
[17] Hua, C. C.; Long, C. N.; Guan, X. P.: New results on stability analysis of neural networks with time-varying delays. Phys. lett. A 352, 335-340 (2006) · Zbl 1187.34099
[18] J.Q. Qiu, H.J. Yang, J.H. Zhang, New robust stability criteria for uncertain neural networks with interval time-varying delays, Chaos Solitons Fractals, in press (doi:10.1016/j.chaos.2007.01.087) · Zbl 1197.34141
[19] Krasovskii, N. N.; Lidskii, E. A.: Analysis and design of controllers in systems with random attributes. Autom. remote control 22, 1021-1025 (1961)
[20] Wang, Z.; Liu, Y.; Yu, L.; Liu, X.: Exponential stability of delayed recurrent neural networks with Markovian jumping parameters. Phys. lett. A 356, 346-352 (2006) · Zbl 1160.37439
[21] Xie, L.: Stochastic robust stability analysis for Markovian jumping neural networks with time delays. Proc. IEEE int. Conf. netw. Sens. control, 923-928 (2005) · Zbl 1112.35092
[22] Huang, H.; Qu, Y. Z.; Li, H. X.: Robust stability analysis of switched Hopfield neural networks with time varying delay under uncertainty. Phys. lett. A 345, 345-354 (2005) · Zbl 05314215
[23] Wang, Z.; Liu, Y.; Yu, L.; Liu, X.: Exponential stability of delayed recurrent neural networks with Markovian jumping parameters. Phys. lett. A 356, 346-352 (2006) · Zbl 1160.37439
[24] Liu, Y.; Wang, Z.; Liu, X.: State estimation of discrete-time Markovian jumping neural networks with mixed mode-dependent delays. Phys. lett. A 372, 7147-7155 (2008) · Zbl 1227.92002
[25] Wang, Z.; Liu, Y.; Liu, X.: State estimation for jumping recurrent neural networks with discrete and distributed delays. Neural netw. 22, 41-48 (2009)
[26] Li, H.; Chen, B.; Zhou, Q.; Lin, C.: Robust exponential stability of delayed uncertain neural networks with Markovian jumping parameters. Phys. lett. A 372, 4996-5003 (2008) · Zbl 1221.92006
[27] Ito, K.; Mckean, H. P.: Diffusion processes and their sample paths. (1965) · Zbl 0127.09503
[28] Song, Q. K.; Wang, Z.: Neural networks with discrete and distributed time-varying delays: A general stability analysis. Chaos solitons fractals 37, 1538-1547 (2008) · Zbl 1142.34380