zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A unified approach to high-gain adaptive controllers. (English) Zbl 1184.93100
Summary: It has been known for some time that proportional output feedback will stabilize MIMO, minimum-phase, linear time-invariant systems if the feedback gain is sufficiently large. High-gain adaptive controllers achieve stability by automatically driving up the feedback gain monotonically. More recently, it was demonstrated that sample-and-hold implementations of the high-gain adaptive controller also require adaptation of the sampling rate. In this paper, we use recent advances in the mathematical field of dynamic equations on time scales to unify and generalize the discrete and continuous versions of the high-gain adaptive controller. We prove the stability of high-gain adaptive controllers on a wide class of time scales.

MSC:
93D15Stabilization of systems by feedback
93C40Adaptive control systems
Software:
TrueTime
WorldCat.org
Full Text: DOI EuDML arXiv
References:
[1] A. Ilchmann, D. H. Owens, and D. Prätzel-Wolters, “High-gain robust adaptive controllers for multivariable systems,” Systems & Control Letters, vol. 8, no. 5, pp. 397-404, 1987. · Zbl 0632.93046 · doi:10.1016/0167-6911(87)90077-6
[2] H. K. Khalil and A. Saberi, “Adaptive stabilization of a class of nonlinear systems using high-gain feedback,” IEEE Transactions on Automatic Control, vol. 32, no. 11, pp. 1031-1035, 1987. · Zbl 0625.93040 · doi:10.1109/TAC.1987.1104481
[3] D. H. Owens, D. Pratzel-Wolters, and A. Ilchmann, “Positive-real structure and high-gain adaptive stabilization,” IMA Journal of Mathematical Control and Information, vol. 4, pp. 167-181, 1987. · Zbl 0631.93058 · doi:10.1093/imamci/4.2.167
[4] J. C. Willems and C. I. Byrnes, “Global adaptive stabilization in the absence of information on the sign of the high frequency gain,” in Analysis and Optimization of Systems, Part 1, vol. 62 of Lecture Notes in Control and Information Sciences, pp. 49-57, Springer, Berlin, Germany, 1984. · Zbl 0549.93043 · doi:10.1007/BFb0004944
[5] D. H. Owens, “Adaptive stabilization using a variable sampling rate,” International Journal of Control, vol. 63, no. 1, pp. 107-119, 1996. · Zbl 0845.93074 · doi:10.1080/00207179608921834
[6] A. Ilchmann and S. Townley, “Adaptive high-gain \lambda -tracking with variable sampling rate,” Systems & Control Letters, vol. 36, no. 4, pp. 285-293, 1999. · Zbl 0914.93036 · doi:10.1016/S0167-6911(98)00101-7
[7] A. Ilchmann and S. Townley, “Adaptive sampling control of high-gain stabilizable systems,” IEEE Transactions on Automatic Control, vol. 44, no. 10, pp. 1961-1966, 1999. · Zbl 0956.93056 · doi:10.1109/9.793786
[8] A. Ilchmann and E. P. Ryan, “On gain adaptation in adaptive control,” IEEE Transactions on Automatic Control, vol. 48, no. 5, pp. 895-899, 2003. · doi:10.1109/TAC.2003.811276
[9] H. Logemann and B. Mårtensson, “Adaptive stabilization of infinite-dimensional systems,” IEEE Transactions on Automatic Control, vol. 37, no. 12, pp. 1869-1883, 1992. · Zbl 0797.93041 · doi:10.1109/9.182474
[10] N. Özdemir and S. Townley, “Integral control by variable sampling based on steady-state data,” Automatica, vol. 39, no. 1, pp. 135-140, 2003. · Zbl 1016.93044 · doi:10.1016/S0005-1098(02)00182-6
[11] M. Bohner and A. Peterson, Advances in Dynamic Equations on Time Scales, Birkhäuser, Boston, Mass, USA, 2003. · Zbl 1025.34001
[12] M. Bohner and A. Peterson, Dynamic Equations on Time Scales, Birkhäuser, Boston, Mass, USA, 2001. · Zbl 0993.39010
[13] C. Pötzsche, S. Siegmund, and F. Wirth, “A spectral characterization of exponential stability for linear time-invariant systems on time scales,” Discrete and Continuous Dynamical Systems, vol. 9, no. 5, pp. 1223-1241, 2003. · Zbl 1054.34086 · doi:10.3934/dcds.2003.9.1223
[14] J. J. DaCunha, “Stability for time varying linear dynamic systems on time scales,” Journal of Computational and Applied Mathematics, vol. 176, no. 2, pp. 381-410, 2005. · Zbl 1064.39005 · doi:10.1016/j.cam.2004.07.026
[15] J. J. DaCunha, Lyapunov stability and floquet theory for nonautonomous linear dynamic systems on time scales, Ph.D. dissertation, Baylor University, Waco, Tex, USA, 2004.
[16] J. E. Slotine and W. Li, Applied Nonlinear Control, Prentice Hall, Upper Saddle River, NJ, USA, 1991. · Zbl 0753.93036
[17] J. M. Davis, I. A. Gravagne, R. J. Marks II, and A. A. Ramos, “Algebraic and dynamic Lyapunov equations on time scales,” submitted.
[18] A. Cervin, D. Henriksson, B. Lincoln, J. Eker, and K.-E. Årzén, “How does control timing affect performance? Analysis and simulation of timing using Jitterbug and TrueTime,” IEEE Control Systems Magazine, vol. 23, no. 3, pp. 16-30, 2003. · doi:10.1109/MCS.2003.1200240
[19] I. A. Gravagne, J. M. Davis, J. J. DaCunha, and R. J. Marks II, “Bandwidth reduction for controller area networks using adaptive sampling,” in Proceedings of the IEEE International Conference on Robotics and Automation, pp. 5250-5255, New Orleans, La, USA, April 2004.