[1] |
J. W. Sammon, “A non-linear mapping for data structure analysis,” IEEE Transactions on Computers, vol. 18, no. 5, pp. 401-409, 1996. |

[2] |
J. H. Friedman and J. W. Tukey, “A projection pursuit algorithm for exploratory data analysis,” IEEE Transactions on Computers, vol. 23, pp. 881-890, 1974. · Zbl 0284.68079
· doi:10.1109/T-C.1974.224051 |

[3] |
J. H. Friedman and W. Stuetzle, “Projection pursuit regression,” Journal of the American Statistical Association, vol. 76, no. 376, pp. 817-823, 1981.
· doi:10.2307/2287576 |

[4] |
T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer Series in Statistics, Springer, New York, NY, USA, 2001. · Zbl 0973.62007 |

[5] |
T. Hastie and W. Stuetzle, “Principal curves,” Journal of the American Statistical Association, vol. 84, no. 406, pp. 502-516, 1989. · Zbl 0679.62048
· doi:10.2307/2289936 |

[6] |
B. Kégl, A. Krzyzak, T. Linder, and K. Zeger, “Learning and design of principal curves,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 3, pp. 281-297, 2000.
· doi:10.1109/34.841759 |

[7] |
A. J. Smola, S. Mika, B. Schölkopf, and R. C. Williamson, “Regularized principal manifolds,” Journal of Machine Learning Research, vol. 1, no. 3, pp. 179-209, 2001. · Zbl 1005.68137
· doi:10.1162/15324430152748227 |

[8] |
R. Tibshirani, “Principal curves revisited,” Statistics and Computing, vol. 2, no. 4, pp. 183-190, 1992.
· doi:10.1007/BF01889678 |

[9] |
P. Baldi and K. Hornik, “Neural networks and principal component analysis: learning from examples without local minima,” Neural Networks, vol. 2, no. 1, pp. 53-58, 1989.
· doi:10.1016/0893-6080(89)90014-2 |

[10] |
D. DeMers and G. Cottrell, “Non-linear dimensionality reduction,” in Advances in Neural Information Processing Systems, vol. 5, pp. 580-587, MIT Press, Cambridge, Mass, USA, 1993. |

[11] |
C. M. Bishop, M. Svensén, and C. K. I. Williams, “GTM: the generative topographic mapping,” Neural Computation, vol. 10, no. 1, pp. 215-234, 1998. · Zbl 0936.68091
· doi:10.1162/089976698300017953 |

[12] |
J. Mao and A. K. Jain, “Artificial neural networks for feature extraction and multivariate data projection,” IEEE Transactions on Neural Networks, vol. 6, no. 2, pp. 296-317, 1995.
· doi:10.1109/72.363467 |

[13] |
A. Hadid, O. Kouropteva, and M. Pietikainen, “Unsupervised learning using locally linear embedding: experiments in face pose analysis,” in Proceedings of the 16th International Conference on Pattern Recognition (ICPR /02), pp. 111-114, 2002. |

[14] |
S. Z. Li, X. Lv, and H. Zhang, “View-subspace analysis of multi-view face patterns,” in Proceedings of the IEEE ICCV Workshop on Recognition, Analysis, and Tracking of Faces and Gestures in Real-Time Systems (RATFG-RTS /01), pp. 125-132, IEEE Computer Society, Washington, DC, USA, 2001. |

[15] |
C. Bouveyron, S. Girard, and C. Schmid, “High-dimensional discriminant analysis,” Communications in Statistics: Theory and Methods, vol. 36, no. 13-16, pp. 2607-2623, 2007. · Zbl 1128.62072
· doi:10.1080/03610920701271095 |

[16] |
M.-H. Yang, “Face recognition using extended isomap,” in Proceedings of the IEEE International Conference on Image Processing, vol. 2, pp. 117-120, 2002. |

[17] |
J. Zhang, S. Z. Li, and J. Wang, “Nearest manifold approach for face recognition,” in Proceedings of the 6th IEEE International Conference on Automatic Face and Gesture Recognition, pp. 223-228, Seoul, Korea, 2004. |

[18] |
E. E. Abusham, D. Ngo, and A. Teoh, “Fusion of locally linear embedding and principal component analysis for face recognition (FLLEPCA),” in Proceedings of the 3rd International Conference on Advances in Patten Recognition (ICAPR /05), vol. 3687 of Lecture Notes in Computer Science, pp. 326-333, 2005. |

[19] |
Y. Chang, C. Hu, and M. Turk, “Probabilistic expression analysis on manifolds,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 520-527, 2004. |

[20] |
A. Elgammal and C.-S. Lee, “Inferring 3D body pose from silhouettes using activity manifold learning,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 681-688, 2004. |

[21] |
O. C. Jenkins and M. J. Matarić, “A spatio-temporal extension to isomap nonlinear dimension reduction,” in Proceedings of the 21st International Conference on Machine Learning (ICML /04), pp. 441-448, 2004. |

[22] |
A. Elgammal and C.-S. Lee, “Separating style and content on a nonlinear manifold,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 478-485, 2004. |

[23] |
A. Brun, H. J. Park, H. Knutsson, and C. F. Westin, “Colouring of DT-MRI fiber traces using Laplacian eigenmaps,” in Proceedings of the 9th International Conference on Computer Aided Systems Theory, vol. 9, pp. 48-51, 2003. |

[24] |
M. Niskanen and O. Silvén, “Comparison of dimensionality reduction methods for wood surface inspection,” in Proceedings of the 6th International Conference on Quality Control by Artificial Vision, pp. 178-188, 2003.
· doi:10.1117/12.514959 |

[25] |
T. Sim, S. Baker, and M. Bsat, “The CMU pose, illumination, and expression (PIE) database,” in Proceedings of the International Conference on Automatic Face and Gesture Recognition, pp. 53-58, Washington, DC, USA, 2002. |

[26] |
J. Yang, A. F. Frangi, J.-Y. Yang, D. Zhang, and Z. Jin, “KPCA plus LDA: a complete kernel fisher discriminant framework for feature extraction and recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, no. 2, pp. 230-244, 2005.
· doi:10.1109/TPAMI.2005.33 |

[27] |
G. Baudat and F. Anouar, “Generalized discriminant analysis using a kernel approach,” Neural Computation, vol. 12, no. 10, pp. 2385-2404, 2000.
· doi:10.1162/089976600300014980 |