×

Analytic solutions and integrability for bilinear recurrences of order six. (English) Zbl 1185.11012

Summary: Somos sequences are integer sequences generated by recurrence relations that are in bilinear form, meaning that they can be written as a quadratic relation between adjacent sets of iterates. Such sequences have appeared in number theory, statistical mechanics and algebraic combinatorics, as well as arising from reductions of bilinear partial difference equations in the theory of discrete integrable systems. This article is concerned with the general form of the Somos-6 recurrence, which is a three-parameter family of bilinear recurrences of order six. After explaining how it arises by reduction from the bilinear discrete BKP equation (Miwa’s equation), an invariant Poisson bracket for Somos-6 is presented. Four independent Casimirs of this bracket, which are the invariants under the action of a group of gauge transformations, lead to an associated map on a four-dimensional reduced phase space. Two rational first integrals for this map are constructed, and (for certain parameter choices) these are found to be in involution for a non-degenerate Poisson bracket associated with a symplectic form on the reduced phase space, so that the map is Liouville integrable. For generic parameter values the explicit analytic solution of the Somos-6 recurrence is given in terms of the Kleinian sigma function for a curve of genus two.

MSC:

11B37 Recurrences
33E30 Other functions coming from differential, difference and integral equations
37J35 Completely integrable finite-dimensional Hamiltonian systems, integration methods, integrability tests

Software:

OEIS
Full Text: DOI

References:

[1] DOI: 10.2307/2371930 · Zbl 0035.03702 · doi:10.2307/2371930
[2] DOI: 10.1016/0012-365X(92)90714-Q · Zbl 0771.11009 · doi:10.1016/0012-365X(92)90714-Q
[3] Somos M, Problem 1470, Crux Math. 15 pp 208– (1989)
[4] Sloane NJA, On-line encyclopedia of integer sequences · Zbl 1274.11001
[5] DOI: 10.1112/S0010437X06002521 · Zbl 1127.16023 · doi:10.1112/S0010437X06002521
[6] Fordy AP, Cluster-mutation periodic quivers and associated Laurent sequences · Zbl 1272.13020
[7] DOI: 10.1006/aama.2001.0770 · Zbl 1012.05012 · doi:10.1006/aama.2001.0770
[8] DOI: 10.3792/pjaa.58.9 · Zbl 0508.39009 · doi:10.3792/pjaa.58.9
[9] Carroll G, Electron J. Combin. 11 pp # R73– (2004)
[10] Propp J, Discrete Math. Theor. Comput. Sci. Proc. AA (DM-CCG) pp 43– (2001)
[11] DOI: 10.1007/s10801-006-0039-y · Zbl 1119.05092 · doi:10.1007/s10801-006-0039-y
[12] DOI: 10.1016/0375-9601(88)90803-1 · Zbl 0679.58023 · doi:10.1016/0375-9601(88)90803-1
[13] DOI: 10.1142/S0217979294000889 · Zbl 1264.82044 · doi:10.1142/S0217979294000889
[14] Duistermaat JJ, QRT and Elliptic Surfaces (2009)
[15] DOI: 10.1016/0167-2789(89)90233-9 · Zbl 0679.58024 · doi:10.1016/0167-2789(89)90233-9
[16] DOI: 10.1215/S0012-7094-48-01582-8 · Zbl 0032.01403 · doi:10.1215/S0012-7094-48-01582-8
[17] Einsiedler M, LMS J. Comput. Math. 4 pp 1– (2001)
[18] DOI: 10.1090/S0002-9939-03-07311-8 · Zbl 1043.11051 · doi:10.1090/S0002-9939-03-07311-8
[19] Everest G, AMS Mathematical Surveys and Monographs 104, in: Recurrence Sequences (2003) · doi:10.1090/surv/104
[20] Shipsey R, Ph.D. thesis, in: Elliptic divisibility sequences (2000)
[21] DOI: 10.1007/s00208-004-0608-0 · Zbl 1066.11024 · doi:10.1007/s00208-004-0608-0
[22] Everest G, Amer. Math. Monthly 114 pp 417– (2007)
[23] DOI: 10.1017/S030500410800114X · Zbl 1165.11018 · doi:10.1017/S030500410800114X
[24] Everest G, Proc. Amer. Math. Soc. 137 pp 1951– (2009)
[25] Robinson R, Proc. Amer. Math. Soc. 116 pp 613– (1992) · doi:10.1090/S0002-9939-1992-1140672-5
[26] Swart CS, Ph.D. thesis, in: Elliptic curves and related sequences (2003)
[27] Zagier D, ’Problems posed at the St. Andrews Colloquium, 1996,’ Solutions, 5th day
[28] DOI: 10.2307/2974977 · Zbl 0873.11022 · doi:10.2307/2974977
[29] DOI: 10.1112/S0024609304004163 · Zbl 1166.11333 · doi:10.1112/S0024609304004163
[30] DOI: 10.1090/S0002-9947-07-04215-8 · Zbl 1162.11011 · doi:10.1090/S0002-9947-07-04215-8
[31] DOI: 10.1070/RM1991v046n05ABEH002856 · Zbl 0785.58027 · doi:10.1070/RM1991v046n05ABEH002856
[32] Baker HF, An Introduction to The Theory of Multiply Periodic Functions (1907)
[33] Lang S, Elliptic Curves: Diophantine Analysis (1978) · doi:10.1007/978-3-662-07010-9
[34] Silverman JH, The Arithmetic of Elliptic Curves (1986) · doi:10.1007/978-1-4757-1920-8
[35] DOI: 10.1515/crll.1994.447.91 · Zbl 0788.14026 · doi:10.1515/crll.1994.447.91
[36] DOI: 10.1017/S0013091503000695 · Zbl 1148.14303 · doi:10.1017/S0013091503000695
[37] DOI: 10.1016/S0375-9601(02)00784-3 · Zbl 0997.34083 · doi:10.1016/S0375-9601(02)00784-3
[38] DOI: 10.1080/10652460310001600609 · Zbl 1041.11047 · doi:10.1080/10652460310001600609
[39] DOI: 10.2991/jnmp.2005.12.s2.5 · Zbl 1126.11007 · doi:10.2991/jnmp.2005.12.s2.5
[40] N. Kanayama,Division polynomials and multiplication formulae of Jacobian varieties of dimension 2, Doctoral thesis, Waseda University, 2003, Math. Proc. Camb. Phil. Soc. 139 (2005), pp. 399–409. · Zbl 1093.14042
[41] Gekhtman M, Moscow Math. J. 3 pp 899– (2003)
[42] DOI: 10.1103/PhysRevLett.27.1192 · Zbl 1168.35423 · doi:10.1103/PhysRevLett.27.1192
[43] van der Poorten AJ, J. Integer Seq. 8 (2005)
[44] van der Poorten AJ, J. Integer Seq. 8 (2005)
[45] DOI: 10.1112/S0024609306018534 · Zbl 1169.11013 · doi:10.1112/S0024609306018534
[46] DOI: 10.1080/10586458.2009.10128900 · Zbl 1178.14007 · doi:10.1080/10586458.2009.10128900
[47] DOI: 10.1088/0305-4470/39/34/012 · Zbl 1116.37037 · doi:10.1088/0305-4470/39/34/012
[48] Propp J, The ’bilinear’ forum, and The Somos sequence site
[49] Mumford D, Tata Lectures on Theta I (1983) · Zbl 0509.14049 · doi:10.1007/978-1-4899-2843-6
[50] Buchstaber VM, Amer. Math. Soc. Transl. 179 pp 1– (1997) · doi:10.1090/trans2/179/01
[51] Atkinson J, Schwarzian integrable systems and the Möbius group: A new connection
[52] DOI: 10.1063/1.2406056 · Zbl 1121.37058 · doi:10.1063/1.2406056
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.