On the zeros of functions from the extended Selberg class of degree 0. (English) Zbl 1185.11054

Summary: We give an improved upper bound for the error term in the Riemann–von Mangoldt formula for functions of degree 0 in the extended Selberg class. The bound is uniform for functions with no zeros in a certain half-plane. The first such bound was given by J. Kaczorowski and A. Perelli [Funct. Approximatio, Comment. Math. 31, 109-117 (2003; Zbl 1065.11072)] in the proof that the extended Selberg class is a semigroup with factorization.


11M41 Other Dirichlet series and zeta functions


Zbl 1065.11072
Full Text: Euclid


[1] R. Balasubramanian, An improvement of a theorem of Titchmarsh on the mean square of \( | \zeta (1/2 +it) |\), Proc. London Math. Soc. 36 , (1978) 540–576. · Zbl 0375.10025
[2] E. Bombieri and D. A. Hejhal, On the distribution of zeros of linear combinations of Euler products. Duke Math. J. 80 (3) (1995), 821–862. · Zbl 0853.11074
[3] K. Chandrasekharan and Raghavan Narasimhan, Zeta-functions of ideal classes in quadratic fields and their zeros on the critical line, Comment. Math. Helv. 43 (1968) 18–30. · Zbl 0157.09302
[4] J. B. Conrey, More than two fifths of the zeros of the Riemann zeta function are on the critical line, J. Angew. Math. 399 (1989) 1–26. · Zbl 0668.10044
[5] Hédi Daboussi and Hubert Delange, On multiplicative arithmetical functions whose modulus does not exceed one, J. London Math. Soc. 26 (2) (1982) 245–264. · Zbl 0499.10052
[6] S. A. Gritsenko, Zeros of linear combinations of functions of special type that are connected with Selberg Dirichlet series, Izvestiya: Math. 60 (4) (1996) 655–694. · Zbl 0887.11038
[7] James Lee Hafner, Zeros on the critical line for Dirichlet series attached to certain cusp forms, Math. Ann. 264 (1) (1983) 21–37. · Zbl 0497.10018
[8] James Lee Hafner, Zeros on the critical line for Maass wave form \(L\)-functions, J. Reine Angew. Math. 377 (1987) 127–158. · Zbl 0603.10028
[9] G. H. Hardy, Sur les zeros de la fonction \(\zeta(s)\) de Riemann, Compt. Rend. Acad. Sci. (Paris) 158 (1914) 1012–1014. · JFM 45.0716.04
[10] J. Kaczorowski and A. Perelli, On the structure of the Selberg class. I. \(0\leq d\leq 1\), Acta Math. 182 (2) (1999) 207–241. · Zbl 1126.11335
[11] J. Kaczorowski and A. Perelli, On the structure of the Selberg class. V. \(1<d<5/3\), Invent. Math. 150 (3) (2002) 485–516. · Zbl 1034.11051
[12] J. Kaczorowski and A. Perelli, The Selberg class: A survey, Number Theory in Progress, in Proc. Conf. in Honor of A. Schinzel , eds. K. Györy et al. (de Gruyter, Berlin, 1999), pp. 953–992. · Zbl 0929.11028
[13] N. Levinson, More than one third of the zeros of Riemann’s zeta-function are on \(\sigma =\frac12 \), Adv. Math. 13 (1974), 383-436. · Zbl 0281.10017
[14] H. L. Montgomery, The pair correlation of zeros of the zeta-function, Analytic Number Theory, Proc. Symp. Pure Math. 24 (1972) 181–193, Amer. Math. Soc., Providence (1973). · Zbl 0268.10023
[15] H. L. Montgomery and R. C. Vaughan, Exponential sums with multiplicative coefficients, Invent. Math. , 43 (1) (1977) 69–82. · Zbl 0362.10036
[16] H. S. A. Potter and E. C. Titchmarsh, The zeros of Epstein’s zeta-functions, Proc. London Math. Soc. 39 (2) (1935) 372–384. · Zbl 0011.39101
[17] K. Ramachandra, On the Mean-Value and Omega-Theorems for the Riemann Zeta-Function, Tata Inst. Fund. Res. Lect. Math. 85 (Springer, Berlin/Heidelberg/New York/Tokyo, 1995). · Zbl 0845.11003
[18] Atle Selberg, On the zeros of Riemann’s zeta-function, Skr. Norske Vid. Akad. Oslo I. 10 (1942) 1–59. · Zbl 0028.11101
[19] E. C. Titchmarsh, The theory of the Riemann zeta-function, Second edition. Edited and with a preface by D. R. Heath-Brown, The Clarendon Press, Oxford University Press, New York, 1986. · Zbl 0601.10026
[20] V. G. Zuravlev, The zeros of Dirichlet \(L\)-functions on short intervals of the critical line, Analytic number theory and the theory of functions, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov, (LOMI) 76 (1978) 72–88, 217.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.