×

On the Chebyshev type inequality for seminormed fuzzy integral. (English) Zbl 1185.28026

Summary: The Chebyshev type inequality for seminormed fuzzy integral is discussed. The main results of this paper generalize some previous results obtained by the authors. We also investigate the properties of semiconormed fuzzy integral, and a related inequality for this type of integral is obtained.

MSC:

28E10 Fuzzy measure theory
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] M. Sugeno, Theory of fuzzy integrals and its applications, Ph.D. Dissertation, Tokyo Institute of Technology, 1974
[2] Benvenuti, P.; Mesiar, R.; Vivona, D., Monotone set functions-based integrals, (), 1329-1379 · Zbl 1099.28007
[3] Pap, E., Null-additive set functions, (1995), Kluwer Dordrecht · Zbl 0856.28001
[4] ()
[5] Ralescu, D.; Adams, G., The fuzzy integral, Journal of mathematics analysis and application, 75, 562-570, (1980) · Zbl 0438.28007
[6] Struk, P., Extremal fuzzy integrals, Soft computing, 10, 502-505, (2006) · Zbl 1097.28013
[7] Wang, Z.; Klir, G.J., Fuzzy measure theory, (1992), Plenum Press New York · Zbl 0812.28010
[8] Klement, E.P.; Mesiar, R.; Pap, E., Integration with respect to decomposable measures, based on a conditionally distributive semiring on the unit interval, International journal of uncertainty fuzziness knowledge-based systems, 8, 701-717, (2000) · Zbl 0991.28014
[9] Mesiar, R., Choquet-like integrals, Journal of mathematical analysis and applications, 194, 477-488, (1995) · Zbl 0845.28010
[10] Murofushi, T.; Sugeno, M., Fuzzy \(t\)-conorm integral with respect to fuzzy measures: generalization of sugeno integral and Choquet integral, Fuzzy sets and systems, 42, 57-71, (1991) · Zbl 0733.28014
[11] Suárez García, F.; Gil Álvarez, P., Two families of fuzzy integrals, Fuzzy sets and systems, 18, 67-81, (1986) · Zbl 0595.28011
[12] Sugeno, M.; Murofushi, T., Pseudo-additive measures and integrals, Journal of mathematical analysis and applications, 122, 197-222, (1987) · Zbl 0611.28010
[13] Weber, S., Measures of fuzzy sets and measures of fuzziness, Fuzzy sets and systems, 13, 247-271, (1984) · Zbl 0576.28011
[14] Weber, S., \(\bot\)-decomposable measures and integrals for Archimedean \(t\)-conorms \(\bot\), Journal of mathematical analysis and applications, 101, 114-138, (1984) · Zbl 0614.28019
[15] Wu, C.; Wang, S.; Ma, M., Generalized fuzzy integrals: part I. fundamental concepts, Fuzzy sets and systems, 57, 219-226, (1993) · Zbl 0786.28016
[16] Anastassiou, G., Chebyshev – grüss type inequalities on \(\mathbf{R}^N\) over spherical shells and balls, Applied mathematics letters, 21, 119-127, (2008) · Zbl 1179.26064
[17] Flores-Franulič, A.; Román-Flores, H., A Chebyshev type inequality for fuzzy integrals, Applied mathematics and computation, 190, 1178-1184, (2007) · Zbl 1129.26021
[18] Mesiar, R.; Ouyang, Y., General Chebyshev type inequalities for sugeno integrals, Fuzzy sets and systems, 160, 58-64, (2009) · Zbl 1183.28035
[19] Ouyang, Y.; Fang, J.; Wang, L., Fuzzy Chebyshev type inequality, International journal of approximate reasoning, 48, 829-835, (2008) · Zbl 1185.28025
[20] Ouyang, Y.; Fang, J., Sugeno integral of monotone functions based on Lebesgue measure, Computers and mathematics with applications, 56, 367-374, (2008) · Zbl 1155.28305
[21] Klement, E.P.; Mesiar, R.; Pap, E., Triangular norms, () · Zbl 1007.20054
[22] Durante, F.; Sempi, C., Semicopulae, Kybernetika, 41, 315-328, (2005) · Zbl 1249.26021
[23] Kandel, A.; Byatt, W.J., Fuzzy sets, fuzzy algebra, and fuzzy statistics, Proceedings of the IEEE, 66, 1619-1639, (1978)
[24] E.P. Klement, R. Mesiar, E. Pap, A universal integral based on measures of level sets, IEEE Transactions on Fuzzy Systems (in press) · Zbl 0991.28014
[25] Saminger, S.; Mesiar, R.; Bodenhofer, U., Domination of aggregation operators and preservation of transitivity, International journal of uncertainty, fuzziness and knowledge-based systems, 10, Suppl, 11-36, (2002) · Zbl 1053.03514
[26] Zhao, R., (N) fuzzy integral, Journal of mathematical research and exposition, 2, 55-72, (1981), (in Chinese) · Zbl 0492.28001
[27] Y. Ouyang, R. Mesiar, Sugeno integral and the comonotone commuting property, International Journal of Uncertainty Fuzziness Knowledge-Based Systems (in press) · Zbl 1178.28031
[28] Ouyang, Y.; Mesiar, R.; Li, J., On the comonotonic-\(\star\)-property for sugeno integral, Applied mathematics and computation, 211, 450-458, (2009) · Zbl 1175.28011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.