×

zbMATH — the first resource for mathematics

Fekete-Szegő problem for strongly starlike functions associated with generalized hypergeometric functions. (English) Zbl 1185.30014
Summary: We consider the Fekete-Szegő problem for strongly starlike functions of order \(\beta \) defined by the Dziok-Srivastava linear operator.

MSC:
30C45 Special classes of univalent and multivalent functions of one complex variable (starlike, convex, bounded rotation, etc.)
33C05 Classical hypergeometric functions, \({}_2F_1\)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Brannan, D.A.; Kirwan, W.E., On some classes of bounded univalent functions, J. London math. soc., 2, 1, 431-443, (1964) · Zbl 0177.33403
[2] Hohlov, Yu.E., Operators and operations in the class of univalent functions, Izv. vyssh. ucebn. zaved mat., 10, 83-89, (1978)
[3] Carlson, B.C.; Shaffer, D.B., Starlike and prestarlike hypergeometric functions, SIAM J. math. anal., 15, 737-745, (1984) · Zbl 0567.30009
[4] Ruscheweyh, S., New criteria for univalent functions, Proc. amer. math. soc., 49, 109-115, (1975) · Zbl 0303.30006
[5] Bernardi, S.D., Convex and starlike univalent functions, Trans. amer. math. soc., 135, 429-446, (1969) · Zbl 0172.09703
[6] Libera, R.J., Some classes of regular univalent functions, Proc. amer. math. soc., 16, 755-758, (1965) · Zbl 0158.07702
[7] Livingston, A.E., On the radius of univalence of certain analytic functions, Proc. amer. math. soc., 17, 352-357, (1966) · Zbl 0158.07701
[8] Owa, S., On the distortion theorems-I, Kyungpook math. J., 18, 53-59, (1978) · Zbl 0401.30009
[9] Srivastava, H.M.; Owa, S., Some characterization and distortion theorems involving fractional calculus, generalized hypergeometric functions, Hadamard products, linear operators and certain subclasses of analytic functions, Nagoya math. J., 106, 1-28, (1987) · Zbl 0607.30014
[10] Darus, M.; Akbarally, A., Coefficient estimates for Ruscheweyh derivatives, Int. J. math. math. sci., 36, 1937-1942, (2004) · Zbl 1070.30003
[11] Om P. Ahuja, H. Orhan, Fekete-Szegö problem for strongly Carlson-Shaffer linear operator (submitted for publication) · Zbl 1290.30007
[12] Fekete, M.; Szegö, G., Eine bermerkung uber ungerade schlichte funktionen, J. London math. soc., 8, 85-89, (1933) · JFM 59.0347.04
[13] Koepf, W., On the fekete – szegö problem for close-to-convex functions II, Arch. math., 49, 420-433, (1987) · Zbl 0635.30020
[14] Ma, W.; Minda, D., A unified treatment of some special classes of univalent functions, (), 157-169 · Zbl 0823.30007
[15] Srivastava, H.M.; Mishra, A.K.; Das, M.K., The fekete – szegö problem for a subclass of close-to-convex functions, Complex variables, theory appl., 44, 145-163, (2001) · Zbl 1021.30014
[16] Pommerenke, Ch., Univalent functions, (1975), Vandenhoeck Ruprecht Gottingen · Zbl 0283.30034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.