O’Regan, D. Fixed-point theory for weakly sequentially continuous mappings. (English) Zbl 1185.34026 Math. Comput. Modelling 27, No. 5, 1-14 (1998). Summary: Some fixed-point theorems are established for weakly contractive operators. These results will then be used to establish existence principles for functional, differential, and integral equations. Cited in 1 ReviewCited in 52 Documents MSC: 34B15 Nonlinear boundary value problems for ordinary differential equations 47H10 Fixed-point theorems 45G10 Other nonlinear integral equations 47N20 Applications of operator theory to differential and integral equations PDFBibTeX XMLCite \textit{D. O'Regan}, Math. Comput. Modelling 27, No. 5, 1--14 (1998; Zbl 1185.34026) Full Text: DOI References: [1] Banas, J.; Goebel, K., Measures of Noncompactness in Banach Spaces, (Lecture Notes in Pure and Applied Math., Volume 60 (1980), Marcel Dekker: Marcel Dekker New York) · Zbl 0441.47056 [2] Dugundji, J.; Granas, A., Fixed point theory, Monografie Matematyczne (1982) · Zbl 0483.47038 [3] Arino, O.; Gautier, S.; Penot, J. P., A fixed-point theorem for sequentially continuous mappings with applications to ordinary differential equations, Funkc. Ekvac., 27, 273-279 (1984) · Zbl 0599.34008 [4] Furi, M.; Pera, P., A continuation method on locally convex spaces and applications to ordinary differential equations on noncompact intervals, Ann. Polon. Math., 47, 331-346 (1987) · Zbl 0656.47052 [5] O’Regan, D., A continuation method for weakly condensing operators, Zeitschrift für Analysis und ihre Anwendungen, 15, 565-578 (1996) · Zbl 0860.47034 [6] De Blasi, F. S., On a property of the unit sphere in Banach spaces, Bull. Math. Soc. Sci. Math. Roum., 21, 259-262 (1977) · Zbl 0365.46015 [7] Edwards, R. E., Functional Analysis, Theory and Applications (1965), Holt, Rinehart and Winston: Holt, Rinehart and Winston New York · Zbl 0182.16101 [8] Engelking, R., General Topology (1989), Heldermann Verlag: Heldermann Verlag Berlin · Zbl 0684.54001 [9] Jameson, G. J.O., An elementary proof of the Arens and Borsuk extension theorems, J. London Math. Soc., 14, 364-368 (1976) · Zbl 0339.54009 [10] Conway, J. B., A Course in Functional Analysis (1990), Springer-Verlag: Springer-Verlag Berlin · Zbl 0706.46003 [11] K. Floret, Weakly compact sets, Lecture Notes in Mathematics.; K. Floret, Weakly compact sets, Lecture Notes in Mathematics. · Zbl 0437.46006 [12] Dunford, N.; Schwartz, J. T., Linear Operators (1958), Interscience, Wiley: Interscience, Wiley New York · Zbl 0084.10402 [13] Zeidler, E., (Nonlinear Functional Analysis and its Applications, Volume I (1986), Springer: Springer New York) · Zbl 0583.47050 [14] Lakshmikantham, V.; Leela, S., Nonlinear Differential Equations in Abstract Spaces (1981), Pergamon Press: Pergamon Press Oxford · Zbl 0456.34002 [15] James, R. C., Weak compactness and reflexivity, Israel J. Math., 2, 101-119 (1964) · Zbl 0127.32502 [16] Kelley, J.; Namioka, I., Linear Topological Spaces (1963), D. Van Nostrand: D. Van Nostrand Princeton, NJ · Zbl 0115.09902 [17] Krasnoselskii, M. A.; Zabrejko, P. P.; Pustylnik, J. I.; Sobolevskii, P. J., Integral Operators in Spaces of Summable Functions (1976), Noordhoff: Noordhoff Leyden · Zbl 0312.47041 [18] Banas, J., Integrable solutions of Hammerstein and Urysohn integral equations, J. Australian Math. Soc. (Ser. A), 46, 61-68 (1989) · Zbl 0666.45008 [19] Banas, J.; EI-Sayed, W. G., Measures of noncompactness and solvability of an integral equation in a class of functions of locally bounded variation, J. Math. Anal. Appl., 167, 133-151 (1992) · Zbl 0754.45008 [20] Emmanuele, G., Integrable solutions of a functional-integral equation, J. Integral Eqns. and Appl., 4, 89-94 (1992) · Zbl 0755.45005 [21] Krasnoselskii, M. A., Topological Methods in the Theory of Nonlinear Integral Equations (1964), Macmillan: Macmillan New York · Zbl 0111.30303 [22] O’Regan, D., A fixed point theorem for weakly condensing operators, (Proc. Royal Soc. Edinburgh, 126A (1996)), 391-398 · Zbl 0846.47042 [23] Szufla, S., Knaeser’s theorem for weak solutions of ordinary differential equations in reflexive Banach spaces, Bull. de l’Academie Polon. des Sciences, Ser. des Sciences Math., Astr. et Phys., 5, 407-413 (1978) · Zbl 0384.34039 [24] Deimling, K., Nonlinear Functional Analysis (1985), Springer-Verlag: Springer-Verlag Berlin · Zbl 0559.47040 [25] O’Regan, D., A general existence principle for strong solutions to the Dirichlet problem for the equation \(Δu + ƒ (t, u) = 0\), Appl. Math. Lett., 10, 3, 29-32 (1997) · Zbl 0882.35054 [26] Cramer, E.; Lakshmikantham, V.; Mitchell, A. R., On the existence of weak solutions of differential equations in nonreflexive Banach spaces, Nonlinear Anal., 2, 169-177 (1978) · Zbl 0379.34041 [27] Knight, W. J., Solutions of differential equations in \(B\)-spaces, Duke Math. J., 41, 437-442 (1974) · Zbl 0288.34063 [28] O’Regan, D., Integral equations in reflexive Banach spaces and weak topologies, (Proc. Amer. Math. Soc., 124 (1996)), 607-614 · Zbl 0844.45009 [29] Edgar, G. A., Measurability in a Banach space, Indiana Univ. Math. J., 26, 663-678 (1977) · Zbl 0361.46017 [30] Kelley, J., General Topology (1955), D. Van Nostrand: D. Van Nostrand Toronto · Zbl 0066.16604 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.