zbMATH — the first resource for mathematics

Rational Misiurewicz maps are rare. (English) Zbl 1185.37103
Summary: We show that the set of Misiurewicz maps has Lebesgue measure zero in the space of rational functions for any fixed degree \(d \geq 2\).

37F10 Dynamics of complex polynomials, rational maps, entire and meromorphic functions; Fatou and Julia sets
Full Text: DOI arXiv
[1] Aspenberg, M.: The Collet-Eckmann condition for rational maps on the Riemann sphere. Ph. D. thesis, Stockholm, 2004, http://www.diva-portal.org/diva/getDocument?Urn_nbn_se_kth-diva-3788-2fulltext.pdf · Zbl 1287.37032
[2] Aspenberg M., Graczyk J.: Dimension and measure for semi-hyperbolic rational maps of degree 2. C. R. Acad. Sci. Paris Ser. I 347, 395–400 (2009) · Zbl 1215.37030
[3] Benedicks M., Carleson L.: On iterations of 1 ax 2 on (, 1). Ann. of Math. (2) 122(1), 1–25 (1985) · Zbl 0597.58016
[4] Benedicks M., Carleson L.: The dynamics of the Hénon map. Ann. of Math. (2) 133(1), 73–169 (1991) · Zbl 0724.58042
[5] Carleson L., Jones P.W., Yoccoz J.-C.: Julia and John. Bol. Soc. Brasil. Mat. (N.S.) 25(1), 1–30 (1994) · Zbl 0804.30023
[6] Chirka, E.M.: Complex Analytic Sets, Volume 46 of Mathematics and its Applications (Soviet Series). Dordrecht: Kluwer Academic Publishers Group, 1989, Translated from the Russian by R. A. M. Hoksbergen
[7] de Melo, W., van Strien, S.: One-Dimensional Dynamics. Volume 25 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], Berlin: Springer-Verlag, 1993 · Zbl 0791.58003
[8] Graczyk J., Światek G., Kotus J.: Non-recurrent meromorhic functions. Fund. Math. 182, 269–281 (2004) · Zbl 1079.37041
[9] Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Wiley Classics Library, New York: John Wiley & Sons Inc., 1994, Reprint of the 1978 original · Zbl 0408.14001
[10] Lattés S.: Sur l’itération des substitutions rationnelles et les fonctions de Poincaré. C. R. Acad. Sci. Paris 166, 26–28 (1918) · JFM 46.0522.01
[11] Lehto, O., Virtanen, K.I.: Quasiconformal Mappings in the Plane. New York: Springer-Verlag, Second edition, 1973, Translated from the German by K. W. Lucas, Die Grundlehren der mathematischen Wissenschaften, Band 126 · Zbl 0267.30016
[12] Mañé R., Sad P., Sullivan D.: On the dynamics of rational maps. Ann. Scient. de l’Ec. Norm. Sup. 16(2), 193–217 (1983)
[13] Mañé R.: On a theorem of Fatou. Bol. Soc. Brasil. Mat. (N.S.) 24(1), 1–11 (1993) · Zbl 0781.30023
[14] McMullen, C.T.: Complex Dynamics and Renormalization. Volume 135 of Annals of Mathematics Studies. Princeton, NJ: Princeton University Press, 1994 · Zbl 0807.30013
[15] Mihalache, N.: La condition de Collet-Eckmann pour les orbites critiques recurrents. Ph.D. thesis, 2006, Orsay
[16] Misiurewicz M.: Absolutely continuous invariant measures for certain maps of an interval. Publ. Math. de l’ IHÉS 53, 17–51 (1981) · Zbl 0477.58020
[17] Przytycki, F.: On measure and Hausdorff dimension of Julia sets of holomorphic Collet-Eckmann maps. In: International Conference on Dynamical Systems (Montevideo, 1995), Volume 362 of Pitman Res. Notes Math. Ser., Harlow: Longman, 1996, pp. 167–181 · Zbl 0868.58063
[18] Rudin, W.: Real and Complex Analysis. New York: McGraw-Hill Book Co., Third edition, 1987 · Zbl 0925.00005
[19] Sands D.: Misiurewicz maps are rare. Commun. Math. Phys. 197(1), 109–129 (1998) · Zbl 0921.58015
[20] Shishikura, M., Lei, T.: An alternative proof of Mañé’s theorem on non-expanding Julia sets. In: The Mandelbrot set, theme and variations, Volume 274 of London Math. Soc. Lecture Note Ser., Cambridge: Cambridge Univ. Press, 2000, pp. 265–279 · Zbl 1062.37046
[21] van Strien S.: Misiurewicz maps unfold generically (even if they are critically non-finite). Fund. Math. 163(1), 39–54 (2000) · Zbl 0965.37038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.