Stadler, Georg Elliptic optimal control problems with \(L^1\)-control cost and applications for the placement of control devices. (English) Zbl 1185.49031 Comput. Optim. Appl. 44, No. 2, 159-181 (2009). Summary: Elliptic optimal control problems with \(L^1\)-control cost are analyzed. Due to the nonsmooth objective functional the optimal controls are identically zero on large parts of the control domain. For applications, in which one cannot put control devices (or actuators) all over the control domain, this provides information about where it is most efficient to put them. We analyze structural properties of \(L^1\)-control cost solutions. For solving the non-differentiable optimal control problem we propose a semismooth Newton method that can be stated and analyzed in function space and converges locally with a superlinear rate. Numerical tests on model problems show the usefulness of the approach for the location of control devices and the efficiency of our algorithm. Cited in 1 ReviewCited in 130 Documents MSC: 49M15 Newton-type methods 49N60 Regularity of solutions in optimal control Keywords:optimal control; nonsmooth regularization; optimal actuator location; placement of control devices; semismooth Newton; active set method × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975) · Zbl 0314.46030 [2] Ascher, U.M., Haber, E., Huang, H.: On effective methods for implicit piecewise smooth surface recovery. SIAM J. Sci. Comput. 28(1), 339–358 (2006) · Zbl 1104.65320 · doi:10.1137/040617261 [3] Bergounioux, M., Ito, K., Kunisch, K.: Primal-dual strategy for constrained optimal control problems. SIAM J. Control Optim. 37(4), 1176–1194 (1999) · Zbl 0937.49017 · doi:10.1137/S0363012997328609 [4] Bertsekas, D.P.: Nonlinear Programming. Athena Scientific, Belmont (1999) · Zbl 1015.90077 [5] Chan, T.F., Tai, X.-C.: Identification of discontinuous coefficients in elliptic problems using total variation regularization. SIAM J. Sci. Comput. 25(3), 881–904 (2003) · Zbl 1046.65090 · doi:10.1137/S1064827599326020 [6] Chen, X., Nashed, Z., Qi, L.: Smoothing methods and semismooth methods for nondifferentiable operator equations. SIAM J. Numer. Anal. 38(4), 1200–1216 (2000) · Zbl 0979.65046 · doi:10.1137/S0036142999356719 [7] Clarke, F.H.: Optimization and Nonsmooth Analysis. Canadian Mathematical Society Series of Monographs and Advanced Texts. Wiley, New York (1983) · Zbl 0582.49001 [8] Costa, L., Figueiredo, I.N., Leal, R., Oliveira, P., Stadler, G.: Modeling and numerical study of actuator and sensor effects for a laminated piezoelectric plate. Comput. Struct. 85(7–8), 385–403 (2007) · doi:10.1016/j.compstruc.2006.11.011 [9] Davis, T.A., Hager, W.W.: A sparse proximal implementation of the LP dual active set algorithm. Math. Program. (2007). doi: 10.1007/s10107-006-0017-0 · Zbl 1146.90037 [10] Durand, S., Nikolova, M.: Stability of the minimizers of least squares with a non-convex regularization. I. Local behavior. Appl. Math. Optim. 53(2), 185–208 (2006) · Zbl 1134.49017 · doi:10.1007/s00245-005-0842-1 [11] Ekeland, I., Temam, R.: Convex Analysis and Variational Problems. North-Holland, Amsterdam (1976) · Zbl 0322.90046 [12] Figueiredo, I.N., Leal, C.: A piezoelectric anisotropic plate model. Asymptot. Anal. 44(3–4), 327–346 (2005) · Zbl 1086.35108 [13] Gilberg, T., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (1983) [14] Glowinski, R.: Numerical Methods for Nonlinear Variational Inequalities. Springer, New York (1984) · Zbl 0536.65054 [15] Grund, T., Rösch, A.: Optimal control of a linear elliptic equation with a supremum-norm functional. Optim. Methods Softw. 15, 299–329 (2001) · Zbl 1005.49013 · doi:10.1080/10556780108805823 [16] Hager, W.W.: The dual active set algorithm. In: Pardalos, P.M. (ed.) Advances in Optimization and Parallel Computing, pp. 137–142. North-Holland, Amsterdam (1992) · Zbl 0814.90106 [17] Hager, W.W.: The dual active set algorithm and its application to linear programming. Comput. Optim. Appl. 21(3), 263–275 (2002) · Zbl 1017.90061 · doi:10.1023/A:1013773102688 [18] Hager, W.W., Hearn, D.W.: Application of the dual active set algorithm to quadratic network optimization. Comput. Optim. Appl. 1(4), 349–373 (1993) · Zbl 0791.90053 · doi:10.1007/BF00248762 [19] Hager, W.W., Ianculescu, G.D.: Dual approximations in optimal control. SIAM J. Control Optim. 22(3), 423–465 (1984) · Zbl 0555.49022 · doi:10.1137/0322027 [20] Hintermüller, M., Ito, K., Kunisch, K.: The primal-dual active set strategy as a semi-smooth Newton method. SIAM J. Optim. 13(3), 865–888 (2003) · Zbl 1080.90074 · doi:10.1137/S1052623401383558 [21] Hintermüller, M., Kunisch, K.: Feasible and noninterior path-following in constrained minimization with low multiplier regularity. SIAM J. Control Optim. 45(4), 1198–1221 (2006) · Zbl 1121.49030 · doi:10.1137/050637480 [22] Hintermüller, M., Ulbrich, M.: A mesh-independence result for semismooth Newton methods. Math. Program. Ser. B 101(1), 151–184 (2004) · Zbl 1079.65065 [23] Ito, K., Kunisch, K.: Augmented Lagrangian methods for nonsmooth convex optimization in Hilbert spaces. Nonlinear Anal. TMA 41, 591–616 (2000) · Zbl 0971.49014 · doi:10.1016/S0362-546X(98)00299-5 [24] Ito, K., Kunisch, K.: The primal-dual active set method for nonlinear optimal control problems with bilateral constraints. SIAM J. Control Optim. 43(1), 357–376 (2004) · Zbl 1077.90051 · doi:10.1137/S0363012902411015 [25] Nikolova, M.: Local strong homogeneity of a regularized estimator. SIAM J. Appl. Math. 61(2), 633–658 (2000) · Zbl 0991.94015 · doi:10.1137/S0036139997327794 [26] Nikolova, M.: Analysis of the recovery of edges in images and signals by minimizing nonconvex regularized least-squares. Multiscale Model. Simul. 4(3), 960–991 (2005) · Zbl 1091.94007 · doi:10.1137/040619582 [27] Ring, W.: Structural properties of solutions to total variation regularization problems. Math. Model. Numer. Anal. 34(4), 799–810 (2000) · Zbl 1018.49021 · doi:10.1051/m2an:2000104 [28] Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1–4), 259–268 (1992) · Zbl 0780.49028 · doi:10.1016/0167-2789(92)90242-F [29] Stadler, G.: Semismooth Newton and augmented Lagrangian methods for a simplified friction problem. SIAM J. Optim. 15(1), 39–62 (2004) · Zbl 1106.90078 · doi:10.1137/S1052623403420833 [30] Tröltzsch, F.: Optimale Steuerung partieller Differentialgleichungen. Vieweg, Wiesbaden (2005) · Zbl 1142.49001 [31] Ulbrich, M.: Semismooth Newton methods for operator equations in function spaces. SIAM J. Optim. 13(3), 805–842 (2003) · Zbl 1033.49039 · doi:10.1137/S1052623400371569 [32] Ulbrich, M., Ulbrich, S.: Superlinear convergence of affine-scaling interior-point Newton methods for infinite-dimensional nonlinear problems with pointwise bounds. SIAM J. Control Optim. 38, 1934–1984 (2000) · Zbl 1010.90094 · doi:10.1137/S0363012997325915 [33] Vogel, C.R.: Computational Methods for Inverse Problems. Frontiers in Applied Mathematics. SIAM, Philadelphia (2002) · Zbl 1008.65103 [34] Vossen, G., Maurer, H.: On L 1-minimization in optimal control and applications to robotics. Optim. Control Appl. Methods 27(6), 301–321 (2006) · doi:10.1002/oca.781 [35] Weiser, M.: Interior point methods in function space. SIAM J. Control Optim. 44(5), 1766–1786 (2005) · Zbl 1132.49024 · doi:10.1137/S0363012903437277 [36] Weiser, M., Gänzler, T., Schiela, A.: A control reduced primal interior point method for a class of control constrained optimal control problems. Comput. Optim. Appl. (2007). doi: 10.1007/s10589-007-9088-y · Zbl 1190.90278 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.