zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Convergence theorems, best approximation and best proximity for set-valued dynamic systems of relatively quasi-asymptotic contractions in cone uniform spaces. (English) Zbl 1185.54020
Authors’ abstract: In cone uniform spaces $X$, using the concept of the $\mathcal{D}$-family of cone pseudodistances, the distance between two not necessarily convex or compact sets $A$ and $B$ in $X$ is defined, the concepts of cyclic and noncyclic set-valued dynamic systems of $\mathcal{D}$-relatively quasi-asymptotic contractions $T:A\cup B\to 2^{A\cup B}$ are introduced and the best approximation and best proximity point theorems for such contractions are proved. Also conditions are given which guarantee that for each starting point each generalized sequence of iterations of these contractions (in particular, each dynamic process) converges and the limit is a best proximity point. Moreover, $\mathcal{D}$-families are constructed, characterized and compared. The results are new for set-valued and single-valued dynamic systems in cone uniform, cone locally convex and cone metric spaces. Various examples illustrating ideas, methods, definitions and results are constructed.

54C60Set-valued maps (general topology)
47H10Fixed-point theorems for nonlinear operators on topological linear spaces
54E15Uniform structures and generalizations
46A40Ordered topological linear spaces, vector lattices
46A03General theory of locally convex spaces
54E50Complete metric spaces
Full Text: DOI
[1] Fan, K.: Extensions of two fixed point theorems of F.E. Browder, Math. Z. 112, 234-240 (1969) · Zbl 0185.39503 · doi:10.1007/BF01110225
[2] Di Bari, C.; Suzuki, T.; Vetro, C.: Best proximity for cyclic Meir--Keeler contractions, Nonlinear anal. 69, 3790-3794 (2008) · Zbl 1169.54021 · doi:10.1016/j.na.2007.10.014
[3] Eldred, A. A.; Kirk, W. A.; Veeramani, P.: Proximal normal structure and relatively nonexpansive mappings, Studia math. 171, 283-293 (2005) · Zbl 1078.47013 · doi:10.4064/sm171-3-5
[4] Eldred, A. A.; Veeramani, P.: Existence and convergence of best proximity points, J. math. Anal. appl. 323, 1001-1006 (2006) · Zbl 1105.54021 · doi:10.1016/j.jmaa.2005.10.081
[5] Kim, W. K.; Kum, S.; Lee, K. H.: On general best proximity pairs and equilibrium pairs in free abstract economies, Nonlinear anal. 68, 2216-2227 (2008) · Zbl 1136.91309 · doi:10.1016/j.na.2007.01.057
[6] Kim, W. K.; Lee, K. H.: Existence of best proximity pairs and equilibrium pairs, J. math. Anal. appl. 316, 433-446 (2006) · Zbl 1101.47040 · doi:10.1016/j.jmaa.2005.04.053
[7] Kirk, W. A.; Reich, S.; Veeramani, P.: Proximal retracts and best proximity pair theorems, Numer. funct. Anal. optim. 24, 851-862 (2003) · Zbl 1054.47040 · doi:10.1081/NFA-120026380
[8] Kirk, W. A.; Srinivasan, P. S.; Veeramani, P.: Fixed points for mappings satisfying cyclical contractive conditions, Fixed point theory 4, 79-89 (2003) · Zbl 1052.54032
[9] Srinivasan, P. S.; Veeramani, P.: On best proximity pair theorems and fixed-point theorems, Abstr. appl. Anal. 2003, No. 1, 33-47 (2003) · Zbl 1023.47035 · doi:10.1155/S1085337503209064
[10] Al-Thagafi, M. A.; Shahzad, N.: Best proximity pairs and equilibrium pairs for Kakutani multimaps, Nonlinear anal. 70, 1209-1216 (2009) · Zbl 1225.47056 · doi:10.1016/j.na.2008.02.004
[11] Basha, S. S.; Veeramani, P.: Best proximity pair theorems for multifunctions with open fibres, J. approx. Theory 103, 119-129 (2000) · Zbl 0965.41020 · doi:10.1006/jath.1999.3415
[12] Prolla, J. B.: Fixed point theorems for set valued mappings and existence of best approximants, Numer. funct. Anal. optim. 5, 449-455 (1982--83) · Zbl 0513.41015 · doi:10.1080/01630568308816149
[13] Sehgal, V. M.; Singh, S. P.: A generalization to multifunctions of Fan’s best approximation theorem, Proc. amer. Math. soc. 102, 534-537 (1988) · Zbl 0672.47043 · doi:10.2307/2047217
[14] Włodarczyk, K.; Plebaniak, R.; Doliński, M.: Cone uniform, cone locally convex and cone metric spaces, endpoints, set-valued dynamic systems and quasi-asymptotic contractions, Nonlinear anal. (2009) · Zbl 1203.54051
[15] Aubin, J. P.; Siegel, J.: Fixed points and stationary points of dissipative multivalued maps, Proc. amer. Math. soc. 78, 391-398 (1980) · Zbl 0446.47049 · doi:10.2307/2042331
[16] Aubin, J. P.; Ekeland, I.: Applied nonlinear analysis, (1984) · Zbl 0641.47066
[17] Aubin, J. P.; Frankowska, H.: Set-valued analysis, (1990) · Zbl 0713.49021
[18] Yuan, G. X. -Z.: KKM theory and applications in nonlinear analysis, (1999) · Zbl 0936.47034
[19] Berge, C.: Topological spaces, (1963) · Zbl 0114.38602
[20] Klein, E.; Thompson, A. C.: Theory of correspondences, (1984) · Zbl 0556.28012
[21] Justman, M.: Iterative processes with ”nucleolar” restrictions, Int. J. Game theory 6, 189-212 (1978) · Zbl 0393.90109 · doi:10.1007/BF01764426
[22] Maschler, M.; Peleg, B.: Stable sets and stable points of set-valued dynamic systems with applications to game theory, SIAM J. Control optim. 14, 985-995 (1976) · Zbl 0363.90145 · doi:10.1137/0314062
[23] E. Tarafdar, R. Vyborny, A Generalized (Multivalued) Contraction Mapping Principle, in: Res. Rep. Pure Math., vol. 54, The University of Queensland, Australia, 1976
[24] Tarafdar, E.; Yuan, G. X. -Z.: Set-valued topological contractions, Appl. math. Lett. 8, 79-81 (1995) · Zbl 0837.54011 · doi:10.1016/0893-9659(95)00089-9
[25] Huang, L. -G.; Zhang, X.: Cone metric spaces and fixed point theorems of contractive mappings, J. math. Anal. appl. 332, 1468-1476 (2007) · Zbl 1118.54022 · doi:10.1016/j.jmaa.2005.03.087