×

Common fixed points of generalized contractive hybrid pairs in symmetric spaces. (English) Zbl 1185.54038

Summary: Several fixed point theorems for hybrid pairs of single-valued and multivalued occasionally weakly compatible maps satisfying generalized contractive conditions are established in a symmetric space.

MSC:

54H25 Fixed-point and coincidence theorems (topological aspects)
54E25 Semimetric spaces
54C60 Set-valued maps in general topology
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] Kannan R: Some results on fixed points.Bulletin of the Calcutta Mathematical Society 1968, 60: 71-76. · Zbl 0209.27104
[2] Sessa S: On a weak commutativity condition of mappings in fixed point considerations.Publications de l’Institut Mathématique. Nouvelle Série 1982, 32(46): 149-153. · Zbl 0523.54030
[3] Jungck G: Compatible mappings and common fixed points.International Journal of Mathematics and Mathematical Sciences 1986,9(4):771-779. 10.1155/S0161171286000935 · Zbl 0613.54029 · doi:10.1155/S0161171286000935
[4] Jungck G: Common fixed points for noncontinuous nonself maps on nonmetric spaces.Far East Journal of Mathematical Sciences 1996,4(2):199-215. · Zbl 0928.54043
[5] Al-Thagafi MA, Shahzad N: Generalized -nonexpansive selfmaps and invariant approximations.Acta Mathematica Sinica 2008,24(5):867-876. 10.1007/s10114-007-5598-x · Zbl 1175.41026 · doi:10.1007/s10114-007-5598-x
[6] Jungck G, Rhoades BE: Fixed point theorems for occasionally weakly compatible mappings.Fixed Point Theory 2006,7(2):287-296. · Zbl 1118.47045
[7] Zhang X: Common fixed point theorems for some new generalized contractive type mappings.Journal of Mathematical Analysis and Applications 2007,333(2):780-786. 10.1016/j.jmaa.2006.11.028 · Zbl 1133.54028 · doi:10.1016/j.jmaa.2006.11.028
[8] Abbas M, Rhoades BE: Common fixed point theorems for hybrid pairs of occasionally weakly compatible mappings defined on symmetric spaces.Panamerican Mathematical Journal 2008,18(1):55-62. · Zbl 1152.54030
[9] Abbas M, Rhoades BE: Common fixed point theorems for occasionally weakly compatible mappings satisfying a generalized contractive condition.Mathematical Communications 2008,13(2):295-301. · Zbl 1175.47050
[10] Aliouche A: A common fixed point theorem for weakly compatible mappings in symmetric spaces satisfying a contractive condition of integral type.Journal of Mathematical Analysis and Applications 2006,322(2):796-802. 10.1016/j.jmaa.2005.09.068 · Zbl 1111.47046 · doi:10.1016/j.jmaa.2005.09.068
[11] Chandra H, Bhatt A: Some fixed point theorems for set valued maps in symmetric spaces.International Journal of Mathematical Analysis 2009,3(17):839-846. · Zbl 1196.54065
[12] Cho, S-H; Lee, G-Y; Bae, J-S, On coincidence and fixed-point theorems in symmetric spaces, 9 (2008) · Zbl 1169.54020
[13] Hicks TL, Rhoades BE: Fixed point theory in symmetric spaces with applications to probabilistic spaces.Nonlinear Analysis: Theory, Methods & Applications 1999,36(3):331-344. 10.1016/S0362-546X(98)00002-9 · Zbl 0947.54022 · doi:10.1016/S0362-546X(98)00002-9
[14] Imdad M, Ali J: Common fixed point theorems in symmetric spaces employing a new implicit function and common property (E.A).Bulletin of the Belgian Mathematical Society. Simon Stevin 2009, 16: 421-433. · Zbl 1188.47044
[15] Pathak HK, Tiwari R, Khan MS: A common fixed point theorem satisfying integral type implicit relations.Applied Mathematics E-Notes 2007, 7: 222-228. · Zbl 1178.54023
[16] Beg, I.; Abbas, M., Coincidence point and invariant approximation for mappings satisfying generalized weak contractive condition, 7 (2006) · Zbl 1133.54024
[17] Chang TH: Common fixed point theorems for multivalued mappings.Mathematica Japonica 1995,41(2):311-320. · Zbl 0840.47041
[18] Shrivastava PK, Bawa NPS, Nigam SK: Fixed point theorems for hybrid contractions.Varāhmihir Journal of Mathematical Sciences 2002,2(2):275-281. · Zbl 1033.54523
[19] Azam A, Beg I: Coincidence points of compatible multivalued mappings.Demonstratio Mathematica 1996,29(1):17-22. · Zbl 0862.54039
[20] Kamran T: Common coincidence points of R -weakly commuting maps.International Journal of Mathematics and Mathematical Sciences 2001,26(3):179-182. 10.1155/S0161171201005245 · Zbl 1006.54061 · doi:10.1155/S0161171201005245
[21] Jungck G, Rhoades BE: Fixed points for set valued functions without continuity.Indian Journal of Pure and Applied Mathematics 1998,29(3):227-238. · Zbl 0904.54034
[22] Hadžić O: Common fixed point theorems for single-valued and multivalued mappings.Review of Research. Faculty of Science. Mathematics Series 1988,18(2):145-151. · Zbl 0729.54032
[23] Kaneko H, Sessa S: Fixed point theorems for compatible multi-valued and single-valued mappings.International Journal of Mathematics and Mathematical Sciences 1989,12(2):257-262. 10.1155/S0161171289000293 · Zbl 0671.54023 · doi:10.1155/S0161171289000293
[24] Kaneko H: A common fixed point of weakly commuting multi-valued mappings.Mathematica Japonica 1988,33(5):741-744. · Zbl 0664.54031
[25] Fisher B: Common fixed points for set-valued mappings.Indian Journal of Mathematics 1983,25(3):265-270. · Zbl 0573.54039
[26] Sessa S, Fisher B: On common fixed points of weakly commuting mappings and set-valued mappings.International Journal of Mathematics and Mathematical Sciences 1986,9(2):323-329. 10.1155/S0161171286000406 · Zbl 0593.54051 · doi:10.1155/S0161171286000406
[27] Fisher B: Common fixed point theorem for commutative mappings and set valued mappings.Journal of University of Kuwait 1984, 11: 15-21. · Zbl 0549.54032
[28] Dhage BC: Common fixed point theorems for coincidentally commuting pairs of nonself mappings in metrically convex metric spaces.Analele Ştiinţifice ale Universităţii Al. I. Cuza din Iaşi. Serie Nouă. Matematică 2003,49(1):45-60. · Zbl 1073.47522
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.