# zbMATH — the first resource for mathematics

Perpetuities with thin tails revisited. (English) Zbl 1185.60074
Ann. Appl. Probab. 19, No. 6, 2080-2101 (2009); erratum ibid. 20, No. 3, 1177 (2010).
Summary: We consider the tail behavior of random variables $$R$$ which are solutions of the distributional equation $$R \overset {d} = Q+MR$$, where $$(Q, M)$$ is independent of $$R$$ and $$|M|\leq 1$$. Ch. M. Goldie and R. Grübel [Adv. Appl. Probab. 28, No. 2, 463–480 (1996; Zbl 0862.60046)] showed that the tails of $$R$$ are no heavier than exponential and that if $$Q$$ is bounded and $$M$$ resembles near 1 the uniform distribution, then the tails of $$R$$ are Poissonian. In this paper, we further investigate the connection between the tails of $$R$$ and the behavior of $$M$$ near 1. We focus on the special case when $$Q$$ is constant and $$M$$ is nonnegative.

##### MSC:
 60H25 Random operators and equations (aspects of stochastic analysis) 60E99 Distribution theory
##### Keywords:
perpetuity; stochastic difference equation; tail behavior
Full Text:
##### References:
  Alsmeyer, G., Iksanov, A. and Rösler, U. (2009). On distributional properties of perpetuities. J. Theoret. Probab. To appear. DOI: 10.1007/s10959-008-0156-8. Available at http://www.springerlink.com/content/v8p233321835h165/fulltext.pdf. · Zbl 1173.60309  Białkowski, M. and Wesołowski, J. (2002). Asymptotic behavior of some random splitting schemes. Probab. Math. Statist. 22 181-191. · Zbl 1011.60047  Bondesson, L. (1979). A general result on infinite divisibility. Ann. Probab. 7 965-979. · Zbl 0421.60014  Brown, M. (1990). Error bounds for exponential approximations of geometric convolutions. Ann. Probab. 18 1388-1402. · Zbl 0709.60016  Chamayou, J.-F. and Letac, G. (1991). Explicit stationary distributions for compositions of random functions and products of random matrices. J. Theoret. Probab. 4 3-36. · Zbl 0728.60012  Embrechts, P. and Goldie, C. M. (1994). Perpetuities and random equations. In Asymptotic Statistics ( Prague , 1993). Contrib. Statist. 75-86. Physica, Heidelberg.  Goldie, C. M. (1991). Implicit renewal theory and tails of solutions of random equations. Ann. Appl. Probab. 1 126-166. · Zbl 0724.60076  Goldie, C. M. and Grübel, R. (1996). Perpetuities with thin tails. Adv. in Appl. Probab. 28 463-480. · Zbl 0862.60046  Grey, D. R. (1994). Regular variation in the tail behaviour of solutions of random difference equations. Ann. Appl. Probab. 4 169-183. · Zbl 0802.60057  Grincevičjus, A. K. (1975). On a limit distribution for a random walk on lines. Litovsk. Mat. Sb. 15 79-91, 243. · Zbl 0373.60009  Hitczenko, P. and Medvedev, G. S. (2009). Bursting oscillations induced by small noise. SIAM J. Appl. Math. 69 1359-1392. · Zbl 1176.60044  Jurek, Z. J. (1999). Selfdecomposability perpetuity laws and stopping times. Probab. Math. Statist. 19 413-419. · Zbl 0987.60024  Kesten, H. (1973). Random difference equations and renewal theory for products of random matrices. Acta Math. 131 207-248. · Zbl 0291.60029  Knape, M. and Neininger, R. (2008). Approximating perpetuities. Methodol. Comput. Appl. Probab. 10 507-529. · Zbl 1293.60028  Krasnosel’skĭ, M. A. and Rutickiĭ, J. B. (1961). Convex Functions and Orlicz Spaces. Translated from the First Russian Edition by Leo F. Boron . P. Noordhoff Ltd., Groningen.  Letac, G. (1986). A contraction principle for certain Markov chains and its applications. In Random Matrices and Their Applications ( Brunswick , Maine , 1984). Contemp. Math. 50 263-273. Amer. Math. Soc., Providence, RI. · Zbl 0587.60057  Thorin, O. (1977). On the infinite divisibility of the lognormal distribution. Scand. Actuar. J. 1977 121-148. · Zbl 0372.60020  Thorin, O. (1977). On the infinite divisibility of the Pareto distribution. Scand. Actuar. J. 1977 31-40. · Zbl 0355.60016  Vervaat, W. (1979). On a stochastic difference equation and a representation of nonnegative infinitely divisible random variables. Adv. in Appl. Probab. 11 750-783. JSTOR: · Zbl 0417.60073  Yannaros, N. (1991). Randomly observed random walks. Comm. Statist. Stochastic Models 7 219-231. · Zbl 0741.60069
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.