×

The pseudo-marginal approach for efficient Monte Carlo computations. (English) Zbl 1185.60083

A powerful and flexible MCMC (Markov chain Monte Carlo) algorithm for stochastic simulation is proposed which builds on pseudo-marginal method originally introduced by M. A. Beaumont [Genetics 164, 1139–1160 (2003)]. In the discrete case, it is the following. Given joint probability distribution \(\pi(\theta,z)\) and conditional distribution \(q_\theta(z)\) the goal is to sample from the marginal distribution \(\pi(\theta)\) (\(\theta \in \Theta\), \(z \in Z\)). If \(\pi(\theta)\) is known analitically or cheap to compute, it would be possible to use Metropolis-Hastings algorithm and to generate samples from a Markov chain with transition probabilities \(p(\theta, \theta')=1 \wedge \frac{\pi(\theta')}{\pi(\theta)}\) if \(\theta' \neq \theta\). If it is not the case, it is proposed in the article to replace probabilities \(\pi(\theta)\), \(\pi(\theta')\) with the estinators \[ \overline{\pi}^N(\theta)=\frac{1}{N} \sum_{k=1}^N \frac{\pi(\theta,z(k))}{q_\theta(z(k))}, \quad \overline{\pi}^N(\theta')=\frac{1}{N} \sum_{k=1}^N \frac{\pi(\theta',z'(k))}{q_{\theta'}(z'(k))}, \] where \(z(k)|\theta \sim q_\theta(\cdot)\), \(z'(k)|\theta' \sim q_{\theta'}(\cdot)\), \(k=1,\dots,N\), the data available during the simulation.
In the article for rather arbitrary spaces \(\Theta\), \(Z\) theoretical results are given describing the convergence properties of the proposed method, and simple numerical examples are given to illustrate the promising empirical characteristics of the technique. Interesting comparisons with a more obvious, but inexact, Monte Carlo approximations to the marginal algorithm are also given.

MSC:

60J22 Computational methods in Markov chains
60K35 Interacting random processes; statistical mechanics type models; percolation theory

References:

[1] Beaumont, M. A. (2003). Estimation of population growth or decline in genetically monitored populations. Genetics 164 1139-1160.
[2] Dellaportas, P. and Forster, J. J. (1999). Markov chain Monte Carlo model determination for hierarchical and graphical log-linear models. Biometrika 86 615-633. JSTOR: · Zbl 0949.62050 · doi:10.1093/biomet/86.3.615
[3] Green, P. J. (1995). Reversible jump MCMC computation and Bayesian model determination. Biometrika 82 711-732. JSTOR: · Zbl 0861.62023 · doi:10.1093/biomet/82.4.711
[4] Meyn, S. P. and Tweedie, R. L. (1993). Markov Chains and Stochastic Stability . Springer, New York. · Zbl 0925.60001
[5] Liu, J. S., Wong, W. H. and Kong, A. (1994). Covariance structure of the Gibbs sampler with applications to the comparisons of estimators and augmentation schemes. Biometrika 81 27-40. JSTOR: · Zbl 0811.62080 · doi:10.1093/biomet/81.1.27
[6] Ntzoufras, I., Dellaportas, P. and Forster, J. (2003). Bayesian variable and link determination for generalized linear models. J. Statist. Plann. Inference 111 165-180. · Zbl 1033.62026 · doi:10.1016/S0378-3758(02)00298-7
[7] O’Neill, P. D., Balding, D. J., Becker, N. G., Eerola, M. and Mollison, D. (2000). Analyzes of infectious disease data from houseing the expected value of ratios, hold outbreaks by Markov chain Monte Carlo methods. Appl. Statist. 49 517-542. · Zbl 0965.62098 · doi:10.1111/1467-9876.00210
[8] Robert, C. P. and Casella, G. (2004). Monte Carlo Statistical Methods , 2nd ed. Springer, New York. · Zbl 1096.62003
[9] Roberts, G. O. and Sahu, S. K. (1997). Updating schemes, correlation structure, blocking and parameterisation for the Gibbs sampler. J. Roy. Static. Soc. Ser. B 59 291-397. JSTOR: · Zbl 0886.62083 · doi:10.1111/1467-9868.00070
[10] Roberts, G. O. and Tweedie, R. (1996). Geometric convergence and central limit theorems for multidimensional Hastings and Metropolis algorithms. Biometrika 83 95-110. JSTOR: · Zbl 0888.60064 · doi:10.1093/biomet/83.1.95
[11] Tierney, L. (1998). A note on Metropolis-Hastings kernels for general state-spaces. Ann. Appl. Probab. 8 1-9. · Zbl 0935.60053 · doi:10.1214/aoap/1027961031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.