zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On the HSS iteration methods for positive definite Toeplitz linear systems. (English) Zbl 1185.65055
Summary: We study the HSS iteration method for large sparse non-Hermitian positive definite Toeplitz linear systems, which first appears in Bai, Golub and Ng’s paper published in 2003 [{\it Z.-Z. Bai, G. H. Golub} and {\it M. K. Ng}, SIAM J. Matrix Anal. Appl. 24, No. 3, 603--626 (2003; Zbl 1036.65032)], and HSS stands for the Hermitian and skew-Hermitian splitting of the coefficient matrix $A$. In this note we use the HSS iteration method based on a special case of the HSS splitting, where the symmetric part $H=\frac 1 2 (A+A^{\text T})$ is a centrosymmetric matrix and the skew-symmetric part $S= \frac {1}{2}(A-A^{\text T})$ is a skew-centrosymmetric matrix for a given Toeplitz matrix. Hence, fast methods are available for computing the two half-steps involved in the HSS and IHSS iteration methods. Some numerical results illustrate their effectiveness.

65F10Iterative methods for linear systems
Full Text: DOI
[1] Bai, Z. -Z.; Golub, G. H.; Ng, M. K.: Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems, SIAM J. Matrix anal. Appl. 24, 603-626 (2003) · Zbl 1036.65032 · doi:10.1137/S0895479801395458
[2] Bai, Z. -Z.; Golub, G. H.; Lu, L. -Z.; Yin, J. -F.: Block triangular and skew-Hermitian splitting methods for positive definite linear systems, SIAM J. Sci. comput. 26, 844-863 (2005) · Zbl 1079.65028 · doi:10.1137/S1064827503428114
[3] Bai, Z. -Z.; Golub, G. H.; Ng, M. K.: On successive overrelaxation acceleration of the Hermitian and skew-Hermitian splitting iterations, Numer. linear algebra appl. 14, 319-335 (2007) · Zbl 1199.65097 · doi:10.1002/nla.517
[4] Chan, R.; Ng, M.: Conjugate gradient methods for Toeplitz systems, SIAM rev. 38, 427-482 (1996) · Zbl 0863.65013 · doi:10.1137/S0036144594276474
[5] Chan, R.; Ng, M.: Toeplitz preconditioners for Hermite Toeplitz systems, Linear algebra appl. 190, 181-208 (1993) · Zbl 0783.65042 · doi:10.1016/0024-3795(93)90226-E
[6] Demmel, J. W.: Applied numerical linear algebra, (1997) · Zbl 0879.65017
[7] Fassbender, H.; Ikramov, K. D.: Computing matrix-vector products with centrosymmetric and centrohermitian matrices, Linear algebra appl. 364, 235-241 (2003) · Zbl 1016.65022 · doi:10.1016/S0024-3795(02)00567-0
[8] Grenander, U.; Szegö, G.: Toeplitz forms and their applications, (1984) · Zbl 0611.47018
[9] T.K. Ku, C.J. Kuo, Preconditioned iterative methods for solving Toeplitz-plus-Hankel systems, Tech. Rep, 181, USC, Signal and Image Processing Institute, June 1991 · Zbl 0782.65046
[10] Levinson, N.: The Wiener RMS (Root mean square) error criterion in filter design and prediction, J. math. Phys. 25, 261-278 (1946)
[11] Liu, Z. Y.: Some properties of centrosymmetric matrices, Appl. math. Comput. 141, No. 2--3, 17-26 (2002)
[12] Melman, A.: Symmetric centrosymmetric matrix-vector multiplication, Linear algebra appl. 320, 193-198 (2000) · Zbl 0971.65022 · doi:10.1016/S0024-3795(00)00232-9
[13] Ng, Michael K.: Circulant and skew-circulant splitting methods for Toeplitz systems, J. comput. Appl. math. 159, 101-108 (2003) · Zbl 1033.65014 · doi:10.1016/S0377-0427(03)00562-4
[14] Toeplitz, O.: Zur theorie der quadratischen und bilinearen formen von unendlichvielen veränderlichen, I. teil: theorie der L-formen, math. Annal. 70, 351-376 (1911) · Zbl 42.0366.01 · doi:10.1007/BF01564502 · http://jfm.sub.uni-goettingen.de/JFM/digit.php?an=JFM+42.0366.01
[15] Trench, W.: An algorithm for the inversion of finite Toeplitz matrices, SIAM J. Appl. math. 12, 515-522 (1964) · Zbl 0131.36002 · doi:10.1137/0112045
[16] Tian, Zhaolu; Gu, Chuanqing: The iterative methods for centrosymmetric matrices, Appl. math. Comput. 187, 902-911 (2007) · Zbl 1121.65035 · doi:10.1016/j.amc.2006.09.030
[17] Yagle, A. E.: New analogs of split algorithms for arbitrary Toeplitz-plus-Hankel matrices, IEEE trans. Signal process. 39, 2457-2463 (1991) · Zbl 0739.65026 · doi:10.1109/78.98001