×

A computational meshless method for the generalized Burger’s-Huxley equation. (English) Zbl 1185.65191

Appl. Math. Modelling 33, No. 9, 3718-3729 (2009); corrigendum ibid. 34, No. 4, 1138 (2010).
Summary: A numerical solution of the generalized Burger’s-Huxley equation, based on collocation method using Radial basis functions (RBFs), called Kansa’s approach is presented. The numerical results are compared with the exact solution, Adomian decomposition method (ADM) and Variational iteration method (VIM). Highly accurate and efficient results are obtained by RBFs method. Excellent agreement with the exact solution is observed.

MSC:

65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Satsuma, J., ()
[2] Wang, X.Y.; Zhu, Z.S.; Lu, Y.K., Solitary wave solutions of the generalized burger’s – huxley equation, J. phys. A: math. gen., 23, 271-274, (1990) · Zbl 0708.35079
[3] Scott, A.C., Neurophysics, (1977), John Wiley New York
[4] Satsuma, J., Explicit solutions of nonlinear equations with density dependent diffusion, J. phys. soc. jpn., 56, 1947-1950, (1987)
[5] Wang, X.Y., Nerve propagation and wall in liquid crystals, Phy. lett., 112A, 402-406, (1985)
[6] Wang, X.Y., Brochard – lager wall in liquid crystals, Phys. rev. A, 34, 5179-5182, (1986)
[7] Hon, Y.C.; Mao, X.Z., An efficient numerical scheme for burgers’ equation, Appl. math. comput., 95, 37-50, (1998) · Zbl 0943.65101
[8] Wu, Zongmin, Dynamical knot and shape parameter setting for simulating shock wave by using multi-quadric quasi-interpolation, Eng. anal. bound. elem., 29, 354-358, (2005) · Zbl 1182.76933
[9] Hardy, R.L., Multiquadric equation of topography and other irregular surfaces, Geophy. res., 76, 1905-1915, (1971)
[10] Girosi, F., On some extensions of radial basis functions and their applications in artificial intelligence, Comput. math. appl., 24, 61-80, (1992) · Zbl 0800.68670
[11] Zala, C.A.; Barrodale, I., Warping aerial photographs to orthomaps using thin plate spline, Adv. comput. math., 11, 211-227, (1999) · Zbl 0943.65027
[12] Cheng, A.H.D., Exponential convergence and h-c multiquadric collocation method for partial diff. eqs, Numer. methods for partial diff. eqs., 19, 571-594, (2003) · Zbl 1031.65121
[13] Kansa, E.J., Multiquadrics – a scattered data approximation scheme with applications to computational fluid dynamics - I, Comput. math. appl., 19, 127-145, (1990) · Zbl 0692.76003
[14] Kansa, E.J.; Hon, Y.C., Circumventing the ill-conditioning problem with multiquadric radial basis functions applications to elliptic partial differential equations, Comput. math. appl., 39, 123-137, (2000) · Zbl 0955.65086
[15] Siraj-ul-Islam, A meshfree method for numerical solution of KdV equation, Eng. anal. bound elem., 32, 849-855, (2008) · Zbl 1244.76087
[16] Khattak, A.J.; Siraj-ul-Islam, A comparative study of numerical solutions of a class of KdV equation, Appl. math comput., 199, 425-434, (2008) · Zbl 1143.65078
[17] Ismail, H.N.A., Adomian decomposition method for burgers’-huxley and burger’s – fisher equations, Appl. math. comput., 159, 291-301, (2004) · Zbl 1062.65110
[18] Estevez, P.G., Non-classical symmetries and the singular modified the burger’s and burgers’-huxley equation, J. phys. A, 27, 2113-2127, (1994) · Zbl 0838.35114
[19] Javidi, M., A numerical solution of the generalized burger’s – huxley equation by pseudospectral method and darvishi’s preconditioning, Appl. math. comput., 175, 1619-1628, (2006) · Zbl 1118.65110
[20] Kaushik, A.; Sharma, M.D., A uniformly convergent numerical method on non-uniform mesh for singularly perturbed unsteady burger – huxley equation, Appl. math. comput., (2007)
[21] Moghimi, Mahdi; Hejazi, Fatema S.A., Variational iteration method for solving generalized burger – fisher and burger equations, Appl. math. comput., 33, 1756-1761, (2007) · Zbl 1138.35398
[22] Young, D.L., The eulerian – lagrangian method of fundamental solutions for two-dimensional unsteady burger’s equations, Eng. anal. bound. elem., 32, 395-412, (2008) · Zbl 1244.76096
[23] Madych, W.R., Miscellaneous error bounds for multiquadric and related interpolators, Comput. math. appl., 24, 121-138, (1992) · Zbl 0766.41003
[24] Wendland, H., Gaussian interpolation revisited, (), 1-10
[25] A Micchelli, C., Interpolation of scattered data: distance matrices and conditionally positive definite functions, Constr. approx., 2, 11-22, (1986) · Zbl 0625.41005
[26] A.J. Khattak et al., Application of meshfree collocation method to a class of nonlinear partial differential equations, Eng. Anal. Bound. Elem. (2008), doi:10.1016/j.enganabound.2008.10.001.
[27] A.E. Tarwater, A parameter study of Hardy’s multiquadric method for scattered data interpolation, Lawrence Livermore National Laboratory, Technical Report UCRL- 54670, 1985.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.