×

The heterogeneous multiscale finite element method for elliptic homogenization problems in perforated domains. (English) Zbl 1185.65210

Authors’ abstract: We analyze a generalization of the heterogeneous multiscale finite element method for elliptic homogenization problems in perforated domains. The method was originally introduced by W. E and B. Engquist [Commun. Math. Sci. 1, No. 1, 87–132 (2003; Zbl 1093.35012)] for homogenization problems in fixed domains. It is based on a standard finite element approach on the macroscale, where the stiffness matrix is computed by solving local cell problems on the microscale. A posteriori error estimates are derived in \(L^{2}(\Omega)\) by reformulating the problem into a discrete two-scale formulation [see also M. Ohlberger, Multiscale Model. Simul. 4, No. 1, 88–114 (2005; Zbl 1090.65128)] and using duality methods afterwards. Numerical experiments are given in order to numerically evaluate the efficiency of the error estimate.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
35J25 Boundary value problems for second-order elliptic equations
35B27 Homogenization in context of PDEs; PDEs in media with periodic structure
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Abdulle A.: On a priori error analysis of fully discrete heterogeneous multiscale FEM. Multiscale Model. Simul. 4(2), 447–459 (2005) (electronic) · Zbl 1092.65093
[2] Abdulle A., E W.: Finite difference heterogeneous multi-scale method for homogenization problems. J. Comput. Phys. 191(1), 18–39 (2003) · Zbl 1034.65067
[3] Abdulle, A., Schwab, C.: Heterogeneous multiscale FEM for diffusion problems on rough surfaces. Multiscale Model. Simul. 3(1), 195–220 (2004/2005) (electronic) · Zbl 1160.65337
[4] Allaire G.: Homogenization and two-scale convergence. SIAM J. Math. Anal. 23(6), 1482–1518 (1992) · Zbl 0770.35005
[5] Alt H.W.: 4Lineare Funktionalanalysis. Springer, Berlin (2002)
[6] Bensoussan, A., Lions, J.-L., Papanicolaou, G.: Asymptotic analysis for periodic structures. Studies in Mathematics and its Applications, vol. 5. North-Holland Publishing Co., Amsterdam (1978) · Zbl 0404.35001
[7] Ciarlet, P.G.: The finite element method for elliptic problems. Studies in Mathematics and its Applications, vol. 4. North-Holland Publishing Co., Amsterdam (1978) · Zbl 0383.65058
[8] Conca C., Gómez D., Lobo M., Pérez M.E.: Homogenization of periodically perforate media. Indiana Univ. Math. J. 48(4), 1447–1470 (1999) · Zbl 0940.35027
[9] Esposito A.C., D’Apice C., Gaudiello A.: A homogenization problem in a perforated domain with both Dirichlet and Neumann conditions on the boundary of the holes. Asymptot. Anal. 31(3–4), 297–316 (2002)
[10] E W., Engquist B.: The heterogeneous multiscale methods. Commun. Math. Sci. 1(1), 87–132 (2003) · Zbl 1093.35012
[11] E W., Engquist B.: Multiscale modeling and computation. Notices Am. Math. Soc. 50(9), 1062–1070 (2003) · Zbl 1032.65013
[12] E, W., Engquist, B.: The heterogeneous multi-scale method for homogenization problems. In: Multiscale Methods in Science and Engineering. Lect. Notes Comput. Sci. Eng., vol. 44, pp. 89–110. Springer, Berlin (2005) · Zbl 1086.65521
[13] E W., Ming P., Zhang P.: Analysis of the heterogeneous multiscale method for elliptic homogenization problems. J. Am. Math. Soc. 18(1), 121–156 (2005) (electronic) · Zbl 1060.65118
[14] Efendiev Y., Hou T.: Multiscale finite element methods for porous media flows and their applications. Appl. Numer. Math. 57(5–7), 577–596 (2007) · Zbl 1112.76046
[15] Hoang, V.H., Schwab, C.: High-dimensional finite elements for elliptic problems with multiple scales. Multiscale Model. Simul. 3(1), 168–194 (2004/2005) (electronic) · Zbl 1074.65135
[16] Thomas Y.H., Wu X.-H.: A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134(1), 169–189 (1997) · Zbl 0880.73065
[17] Thomas Y.H., Wu X.-H., Cai Z.: Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients. Math. Comp. 68(227), 913–943 (1999) · Zbl 0922.65071
[18] Matache, A.-M.: Sparse two-scale FEM for homogenization problems. In: Proceedings of the Fifth International Conference on Spectral and High Order Methods (ICOSAHOM-01) (Uppsala), vol. 17, pp. 659–669 (2002) · Zbl 0999.65125
[19] Matache A.-M., Schwab C.: Two-scale FEM for homogenization problems. M2AN Math. Model. Numer. Anal. 36(4), 537–572 (2002) · Zbl 1070.65572
[20] Ming P., Zhang P.: Analysis of the heterogeneous multiscale method for parabolic homogenization problems. Math. Comp. 76(257), 153–177 (2007) (electronic) · Zbl 1129.65067
[21] Oden J.T., Vemaganti K.S.: Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials. I. Error estimates and adaptive algorithms. J. Comput. Phys. 164(1), 22–47 (2000) · Zbl 0992.74072
[22] Ohlberger M.: A posteriori error estimates for the heterogeneous multiscale finite element method for elliptic homogenization problems. Multiscale Model. Simul. 4(1), 88–114 (2005) (electronic) · Zbl 1090.65128
[23] Oleĭnik, O.A., Shamaev, A.S., Yosifian, G.A.: Mathematical problems in elasticity and homogenization. Studies in Mathematics and its Applications, vol. 26. North-Holland Publishing Co., Amsterdam (1992) · Zbl 0768.73003
[24] Persson, J.: A non-periodic and two-dimensional example of elliptic homogenization (2009, preprint)
[25] Schwab, C., Matache, A.-M.: Generalized FEM for homogenization problems. In: Multiscale and multiresolution methods. Lect. Notes Comput. Sci. Eng., vol. 20, pp. 197–237. Springer, Berlin (2002) · Zbl 0989.65131
[26] Szabo B., Babuska I.: Finite Element Analysis, chapter 6.3, pp. 105–112. Wiley, London (1991)
[27] Vemaganti K.S., Oden J.T.: Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials. II. A computational environment for adaptive modeling of heterogeneous elastic solids. Comput. Methods Appl. Mech. Eng. 190(46–47), 6089–6124 (2001) · Zbl 1030.74051
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.