Yang, Xibei; Yu, Dongjun; Yang, Jingyu; Song, Xiaoning Difference relation-based rough set and negative rules in incomplete information system. (English) Zbl 1185.68696 Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 17, No. 5, 649-665 (2009). Summary: The purpose of this paper is to present a new rough set model for generating negative rules from the incomplete information system. A negative rule indicates that if an object does not satisfy the attribute-value pairs in the condition part, then we can exclude the decision part from such object. The proposed rough set model is constructed on the basis of a difference relation. Such difference relation is a binary relation without any constraints. Moreover, to simplify the negative rules generated from the difference relation-based rough approximations, the concepts of lower, upper approximate and rough reducts are also proposed. Some numerical examples are employed to substantiate the conceptual arguments. Cited in 4 Documents MSC: 68T30 Knowledge representation 68T37 Reasoning under uncertainty in the context of artificial intelligence Keywords:incomplete information system; negative rules; difference relation; rough set; knowledge reduction PDF BibTeX XML Cite \textit{X. Yang} et al., Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 17, No. 5, 649--665 (2009; Zbl 1185.68696) Full Text: DOI References: [1] DOI: 10.1007/978-94-011-3534-4 [2] DOI: 10.1080/019697298125470 · Zbl 1008.03526 [3] DOI: 10.1016/S0020-0255(02)00197-4 · Zbl 1018.68082 [4] DOI: 10.1016/j.ins.2006.06.003 · Zbl 1142.68549 [5] DOI: 10.1016/j.ins.2006.06.006 · Zbl 1142.68550 [6] DOI: 10.1016/j.ins.2006.06.007 · Zbl 1142.68551 [7] Grzymala-Busse J. W., Lecture Notes in Computer Science 3100 pp 78– (2004) [8] Huang B., Lecture Notes in Artificial Intelligence 3613 pp 1223– (2005) [9] DOI: 10.1016/S0020-0255(98)10019-1 · Zbl 0951.68548 [10] DOI: 10.1016/S0020-0255(98)10065-8 · Zbl 0948.68214 [11] Leung Y., Inform. Sci. 115 pp 85– [12] DOI: 10.1016/j.ejor.2004.03.032 · Zbl 1136.68528 [13] DOI: 10.1080/03081070600687668 · Zbl 1115.68130 [14] DOI: 10.1142/S021848850200134X · Zbl 1085.68696 [15] DOI: 10.1002/(SICI)1097-4571(19980415)49:5<415::AID-ASI4>3.0.CO;2-Z · Zbl 02327257 [16] DOI: 10.1002/int.20051 · Zbl 1089.68128 [17] DOI: 10.1111/0824-7935.00162 · Zbl 01937820 [18] DOI: 10.1109/69.842271 · Zbl 05108848 [19] DOI: 10.1111/1468-0394.00252 · Zbl 05653444 [20] DOI: 10.1016/j.ins.2007.10.006 · Zbl 1134.68056 [21] DOI: 10.1016/j.ins.2007.09.019 · Zbl 1134.68057 [22] DOI: 10.1016/j.knosys.2008.04.008 [23] DOI: 10.1109/51.853482 [24] DOI: 10.1016/S0020-0255(98)00012-7 · Zbl 0934.03071 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.