×

Algebraic geometry and kinematics. (English) Zbl 1185.70005

Emiris, Ioannis Z. (ed.) et al., Nonlinear computational geometry. Papers presented at the workshop, Minneapolis, MN, USA, May 29–June 2, 2007. Dordrecht: Springer (ISBN 978-1-4419-0998-5/hbk; 978-1-4419-0999-2/e-book). The IMA Volumes in Mathematics and its Applications 151, 85-107 (2010).
Summary: In this overview paper we show how problems in computational kinematics can be translated into the language of algebraic geometry and subsequently solved using techniques developed in this field. The idea to transform kinematic features into the language of algebraic geometry is old and goes back to Study. Recent advances in algebraic geometry and symbolic computation gave the motivation to resume these ideas and make them successful in the solution of kinematic problems. It is not the aim of the paper to provide detailed solutions, but basic accounts to the used tools and examples where these techniques were applied within the last years. We start with Study’s kinematic mapping and show how kinematic entities can be transformed into algebraic varieties. The transformations in the image space that preserve the kinematic features are introduced. The main topic are the definition of constraint varieties and their application to the solution of direct and inverse kinematics of serial and parallel robots. We provide a definition of the degree of freedom of a mechanical system that takes into account the geometry of the device and discuss singularities and global pathological behavior of selected mechanisms. In a short paragraph we show how the developed methods are applied to the synthesis of mechanical devices.
For the entire collection see [Zbl 1181.14003].

MSC:

70B15 Kinematics of mechanisms and robots
53A17 Differential geometric aspects in kinematics
14H50 Plane and space curves
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Alizade, R.; Bayram, C.; Gezgin, E., Structural synthesis of serial platform manipulators, Mechanism and Machine Theory, 42, 580-599 (2007) · Zbl 1183.70008 · doi:10.1016/j.mechmachtheory.2006.05.005
[2] Bennett, G. T., A new mechanism, Engineering, 76, 777-778 (1903)
[3] Blaschke, W., Euklidische Kinematik und nichteuklidische Geometrie, Zeitschr. Math. Phys., 60, 61-91 (1911)
[4] O. Bottema and B. Roth, Theoretical Kinematics, Dover Publications, 1990. · Zbl 0747.70001
[5] D.A. Cox, J.B. Little, and D. O’Shea, Ideals, Varieties and Algorithms, Springer, third ed., 2007. · Zbl 1118.13001
[6] H.S.M. Coxeter, Non-Euclidean Geometry, Math. Assoc. Amer., 6th ed., 1988. · Zbl 0909.51003
[7] Freudenstein, F., Kinematics: Past, present and future, Mechanism and Machine Theory, 8, 151-160 (1973) · doi:10.1016/0094-114X(73)90049-9
[8] Golub, G. H.; Van Loan, C. F., Matrix Computations (1996), Baltimore: Johns Hopkins University Press, Baltimore · Zbl 0865.65009
[9] Grünwald, J., Ein Abbildungsprinzip, welches die ebene Geometrie und Kinematik mit der räumlichen Geometrie verknüpft, Österreich, Akad. Wiss. Math.-Natur. Kl. S.-B. II, 80, 677-741 (1911)
[10] A. Hatcher, Algebraic Topology, Cambridge University press, 2002. · Zbl 1044.55001
[11] M.L. Husty, E. Borel’s and R. Bricard’s papers on displacements with spherical paths and their relevance to self-motions of parallel manipulators, in International Symposium on History of Machines and Mechanisms-Proceedings HMM 2000, M. Ceccarelli, ed., Kluwer Acad. Pub., 2000, pp. 163-172.
[12] M.L. Husty and A. Karger, Architecture singular parallel manipulators and their self-motions, in Advances in Robot Kinematics, J. Lenarcic and M.M. Stanisic, eds., Kluwer Acad. Pub., 2000, pp. 355-364.
[13] ——, Self-motions of Griffis-Duffy type platforms, in Proceedings of IEEE conference on Robotics and Automation (ICRA 2000), San Francisco, USA, 2000, pp. 7-12.
[14] ——, Architecture singular planar Stewart-Gough platforms, in Proceedings of the 10th workshop RAAD, Vienna, Austria, 2001, p. 6. CD-Rom Proceedings.
[15] Husty, M. L.; Karger, A.; Sachs, H.; Steinhilper, W., Kinematik und Robotik (1997), Berlin, Heidelberg, New York: Springer, Berlin, Heidelberg, New York · Zbl 0877.70001
[16] Y. Lu, D. Bates, A.J. Sommese, and C.W. Wampler, Finding all real points of a complex curve, in Proceedings of the Midwest Algebra, Geometry and Its Interactions Conference, Contemporary Mathematics, AMS, 2007, p. v. 448. · Zbl 1136.65050
[17] McCarthy, J. M., Geometric Design of Linkages, Vol. 320 of Interdisciplinary Applied Mathematics (2000), New York: Springer, New York · Zbl 0955.70001
[18] Merlet, J.-P., Singular configurations of parallel manipulators and Grassmann geometry, Int. Journ. of Robotics Research, 8, 150-162 (1992) · doi:10.1177/027836499201100205
[19] M. Pfurner, Analysis of spatial serial manipulators using kinematic mapping, PhD thesis, University Innsbruck, 2006.
[20] H. Pottmann and J. Wallner, Computational Line Geometry, Springer, 2001. · Zbl 1006.51015
[21] Rath, W., Matrix groups and kinematics in projective spaces, Abh. Math. Sem. Univ. Hamburg, 63, 177-196 (1993) · Zbl 0791.53014 · doi:10.1007/BF02941341
[22] Schröcker, H.-P.; Husty, M. L.; McCarthy, J. M., Kinematic mapping based assembly mode evaluation of planar four-bar mechanisms, ASME J. Mechanical Design, 129, 924-929 (2007) · doi:10.1115/1.2747635
[23] Selig, J. M., Geometric Fundamentals of Robotics (2005), New York: Monographs in Computer Science, Springer, New York · Zbl 1062.93002
[24] Sommese, A.; Verschelde, J.; Wampler, C., Advances in polynomial continuation for solving problems in kinematics, ASME J. Mechanical Design, 126, 262-268 (2004) · doi:10.1115/1.1649965
[25] A. Sommese and C. Wampler, The Numerical Solution of Systems of Polynomials Arising in Engineering and Science, World Scientific, 2006. · Zbl 1091.65049
[26] Study, E., Von den Bewegungen und Umlegungen, Math. Ann., 39, 441-566 (1891) · doi:10.1007/BF01199824
[27] ——, Geometrie der Dynamen, B.G. Teubner, Leipzig, 1903.
[28] L.-W. Tsai, Robot Analysis: The Mechanics of Serial and Parallel Manipulators, John Wiley & Sons, Inc., 1999.
[29] Wampler, C. W., Forward displacement analysis of general six-in-parallel SPS (Stewart) platform manipulators, Mechanism and Machine Theory, 31, 331-337 (1996) · doi:10.1016/0094-114X(95)00068-A
[30] Wunderlich, W., Ein vierdimensionales Abbildungsprinzip für ebene Bewegungen, Z. Angew. Math. Mech., 66, 421-428 (1986) · Zbl 0596.70001 · doi:10.1002/zamm.19860660912
[31] Zlatanov, D.; Fenton, R. G.; Benhabib, B., Identification and classification of the singular configurations of mechanisms, Mechanism and Machine Theory, 33, 743-760 (1998) · Zbl 1049.70572 · doi:10.1016/S0094-114X(97)00053-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.