×

The formation and evolution of synthetic jets. (English) Zbl 1185.76532


MSC:

76D25 Wakes and jets
76F10 Shear flows and turbulence
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] O. Savas and D. Coles, ”Coherence measurements in synthetic turbulent boundary layers,” J. Fluid Mech. JFLSA7160, 421 (1985).
[2] E. Gutmark and I. Wygnanski, ”The planar turbulent jet,” J. Fluid Mech. JFLSA773, 465 (1976).
[3] K. Bremhorst and P. G. Hollis, ”Velocity field of an axisymmetric pulsed, subsonic air jet,” AIAA J. AIAJAH28, 2043 (1990).
[4] B. L. Smith and A. Glezer, ”Vectoring and small-scale motions effected in free shear flows using synthetic jet actuators,” AIAA 35th Aerospace Sciences Meeting No. 97-0213, 1997 (unpublished).
[5] M. Amitay, A. Honohan, M. Trautman, and A. Glezer, ”Modification of the aerodynamic characteristics of bluff bodies using fluidic actuators,” 28th AIAA Fluid Dynamics Conference No. 97-2004, 1997 (unpublished).
[6] M. J. Lighthill, ”Acoustic streaming,” J. Sound Vib. JSVIAG61, 391 (1978). · Zbl 0402.76066
[7] A. Meissner, ”Uber piezo-elektrische Kristalle bei Hoch-frequenz,” Zh. Tekh. Fiz. ZTEFA37, 585 (1926).
[8] J. M. Andres and U. Ingard, ”Acoustic streaming at high Reynolds numbers,” J. Acoust. Soc. Am. JASMAN25, 928 (1953).
[9] J. T. Stuart, ”Double boundary layers in oscillatory viscous flow,” J. Fluid Mech. JFLSA724, 673 (1966). · Zbl 0139.21704
[10] B. J. Davidson and N. Riley, ”Jets induced by oscillatory motion,” J. Fluid Mech. JFLSA753, 287 (1972). · Zbl 0252.76022
[11] N. Riley and M. F. Wibrow, ”The flow induced by the torsional oscillations of an elliptic cylinder,” J. Fluid Mech. JFLSA7290, 279 (1995). · Zbl 0843.76014
[12] U. Ingard and S. Labate, ”Acoustic circulation effects and the nonlinear impedance of orifices,” J. Acoust. Soc. Am. JASMAN22, 211 (1950).
[13] I. V. Lebedeva, ”Experimental study of acoustic streaming in the vicinity of orifices,” Sov. Phys. Acoust. SOPAAX26, 331 (1980).
[14] E. P. Mednikov and B. G. Novitskii, ”Experimental study of intense acoustic streaming,” Sov. Phys. Acoust. SOPAAX21, 152 (1975).
[15] R. D. James, J. W. Jacobs, and A. Glezer, ”A round turbulent jet produced by an oscillating diaphragm,” Phys. Fluids PHFLE68, 2484 (1996).
[16] L. S. G. Kovasznay, H. Fujita, and R. L. Lee, ”Unsteady turbulent puffs,” Adv. Geophys. ADGOAR18B, 253 (1973).
[17] D. J. Coe, M. G. Allen, M. A. Trautman, and A. Glezer, ”Micromachined Jets for Manipulation of Macroflows,” Solid-State Sensor and Actuator Workshop, Hilton Head, North Carolina, 1994 (unpublished).
[18] D. J. Coe, M. G. Allen, B. L. Smith, and A. Glezer, ”Addressable micromachined jet arrays,” Technical Digest: TRANSDUCERS ’95. Stockholm, Sweden, 1995 (unpublished).
[19] D. Auerbach, ”Experiments on the trajectory and circulation of the starting vortex,” J. Fluid Mech. JFLSA7183, 185 (1987).
[20] N. Didden, ”On the formation of vortex rings: rolling-up and production of circulation,” Z. Angew. Math. Phys. ZAMPA830, 101 (1979).
[21] A. Glezer, ”The formation of vortex rings,” Phys. Fluids PFLDAS31, 3532 (1988).
[22] N. Didden, ”Untersuchung laminarer instabiler Ringwirbel mittels Laser-Doppler-Anemometrie,” dissertation, University of Göttingen;
[23] also Mitt. MPI und AVA, Göttingen, No. 64, 1977.
[24] P. Schneider, ”Sekundarwirbelbildung bei Ringwirbeln und in Freistrahlen,” Z. Flugwiss. Weltraumforsch. ZFWEDT4, 307 (1980).
[25] A. Glezer and D. Coles, ”An experimental study of a turbulent vortex ring,” J. Fluid Mech. JFLSA7211, 243 (1990).
[26] L. P. Bernal and A. Roshko, ”Streamwise vortex structure in plane mixing layers,” J. Fluid Mech. JFLSA7170, 499 (1986).
[27] K. J. Nygaard and A. Glezer, ”Evolution of streamwise vortices and the generation of small-scale motions in a plane mixing layer,” J. Fluid Mech. JFLSA7231, 257 (1991).
[28] F. A. Roberts, ”Effects of a periodic disturbance on structure and mixing in turbulent shear layers and wakes,” Ph.D. thesis, California Institute of Technology, 1985.
[29] C. H. K. Williamson, ”Three-dimensional aspects and transition of the wake of a circular cylinder,” in Turbulent Shear Flows 7 (Springer, Berlin, 1991).
[30] M. Lee and W. C. Reynolds, ”Bifurcating and blooming jets,” Stanford Report No. TF-22, 1985. · Zbl 1125.76322
[31] A. Krothapalli, D. Baganoff, and K. Karamcheti, ”On the mixing of a rectangular jet,” J. Fluid Mech. JFLSA7107, 201 (1981).
[32] K. W. Everitt and A. G. Robins, ”The development and structure of turbulent plane jets,” J. Fluid Mech. JFLSA788, 563 (1978).
[33] L. J. S. Bradbury, ”The structure of a self-preserving turbulent plane jet,” J. Fluid Mech. JFLSA723, 31 (1965).
[34] G. Heskestad, ”Hot-wire measurements in a plane turbulent jet,” J. Appl. Mech. JAMCAV32, 721 (1965).
[35] E. Gutmark and Chih-Ming Ho, ”Preffered modes and the spreading rates of jets,” Phys. Fluids PFLDAS26, 2932 (1983).
[36] N. E. Kotsovinos and P. B. Angelidis, ”The momentum flux in turbulent submerged jets,” J. Fluid Mech. JFLSA7229, 453 (1991). · Zbl 0850.76255
[37] B. G. van der Hegge Zijnen, ”Measurements of the velocity distribution in a plane turbulent jet of air,” Appl. Sci. Res., Sect. A ASRAA97, 256 (1958).
[38] M. Van Dyke, Album of Fluid Motion (Parabolic, Stanford, 1982).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.