On the 2D Ising Wulff crystal near criticality. (English) Zbl 1185.82010

Summary: We study the behavior of the two-dimensional Ising model in a finite box at temperatures that are below, but very close to, the critical temperature. In a regime where the temperature approaches the critical point and, simultaneously, the size of the box grows fast enough, we establish a large deviation principle that proves the appearance of a round Wulff crystal.


82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics
60F10 Large deviations
60K35 Interacting random processes; statistical mechanics type models; percolation theory
82B27 Critical phenomena in equilibrium statistical mechanics
82B26 Phase transitions (general) in equilibrium statistical mechanics
82D25 Statistical mechanics of crystals
Full Text: DOI arXiv


[1] Alexander, K. S. (1998). On weak mixing in lattice models. Probab. Theory Related Fields 110 441-471. · Zbl 0906.60074
[2] Alexander, K. S. (2004). Mixing properties and exponential decay for lattice systems in finite volumes. Ann. Probab. 32 441-487. · Zbl 1048.60080
[3] Alexander, K. S. (2001). Cube-root boundary fluctuations for droplets in random cluster models. Comm. Math. Phys. 224 733-781. · Zbl 0996.82034
[4] Alexander, K., Chayes, J. T. and Chayes, L. (1990). The Wulff construction and asymptotics of the finite cluster distribution for two-dimensional Bernoulli percolation. Comm. Math. Phys. 131 1-50. · Zbl 0698.60098
[5] Barouch, E., Mc Coy, B. M., Tracy, C. A. and Wu, T. T. (1976). Spin-spin correlation functions for the two dimensional Ising model: Exact theory in the scaling region. Phys. Rev. B 13 316-375.
[6] Bodineau, T. (1999). The Wulff construction in three and more dimensions. Comm. Math. Phys. 207 197-229. · Zbl 1015.82005
[7] Bodineau, T. (2005). Slab percolation for the Ising model. Probab. Theory Related Fields 132 83-118. · Zbl 1071.82012
[8] Bricmont, J., Lebowitz, J. L. and Pfister, C. E. (1981). On the local structure of the phase separation line in the two-dimensional Ising system. J. Stat. Phys. 26 313-332.
[9] Cerf, R. (2000). Large deviations for three dimensional supercritical percolation. Astérisque 267 vi+177. · Zbl 0962.60002
[10] Cerf, R. (2004). The Wulff Crystal in Ising and Percolation Models . Ecole d’été de probabilités, Saint Flour.
[11] Cerf, R. and Messikh, R. J. (2006). The 2d-Ising Model Near Criticality: A FK-percolation Analysis. · Zbl 1228.60106
[12] Cerf, R. and Pisztora, Á. (2000). On the Wulff crystal in the Ising model. Ann. Probab. 28 947-1017. · Zbl 1034.82006
[13] Cerf, R. and Pisztora, Á. (2001). Phase coexistence in Ising, Potts and percolation models. Ann. Inst. H. Poincaré Probab. Statist. 37 643-724. · Zbl 1006.60094
[14] Cheng, H. and Wu, T. T. (1967). Theory of Toeplitz determinants and the spin correlations of the two-dimensional Ising model. III. Phys. Rev. 164 719-735.
[15] Couronné, O. and Messikh, R. J. (2004). Surface order large deviations for 2D FK-percolation and Potts models. Stochastic Process. Appl. 113 81-99. · Zbl 1080.60020
[16] De Giorgi, E. (1958). Sulla proprietà isoperimetrica dell’ipersfera, nella classe degli insiemi aventi frontiera orientata di misura finita. Atti Accad. Naz. Lincei. Mem. Cl. Sci. Fis. Mat. Nat. Sez. I (8) 5 33-44. · Zbl 0116.07901
[17] Deuschel, J.-D. and Pisztora, Á. (1996). Surface order large deviations for high-density percolation. Probab. Theory Related Fields 104 467-482. · Zbl 0842.60023
[18] Dobrushin, R., Kotecký, R. and Shlosman, S. (1992). Wulff Construction. Translations of Mathematical Monographs 104 . Amer. Math. Soc., Providence, RI. · Zbl 0917.60103
[19] Edwards, R. G. and Sokal, A. D. (1988). Generalization of the Fortuin-Kasteleyn-Swendsen-Wang representation and Monte Carlo algorithm. Phys. Rev. D (3) 38 2009-2012.
[20] Fortuin, C. M. and Kasteleyn, P. W. (1972). On the random-cluster model. I. Introduction and relation to other models. Physica 57 536-564.
[21] Grimmett, G. (1997). Percolation and disordered systems. In Lectures on Probability Theory and Statistics. Lecture Notes in Math. 1665 153-300. Springer, Berlin. · Zbl 0884.60089
[22] Grimmett, G. (1994). The random-cluster model. In Probability , Statistics and Optimisation 49-63. Wiley, Chichester. · Zbl 0858.60093
[23] Hoeffding, W. (1963). Probability inequalities for sums of bounded random variables. J. Amer. Statist. Assoc. 58 13-30. · Zbl 0127.10602
[24] Ioffe, D. (1994). Large deviations for the 2D Ising model: A lower bound without cluster expansions. J. Stat. Phys. 74 411-432. · Zbl 0946.82502
[25] Ioffe, D. (1995). Exact large deviation bounds up to T c for the Ising model in two dimensions. Probab. Theory Related Fields 102 313-330. · Zbl 0830.60018
[26] Ioffe, D. and Schonmann, R. H. (1998). Dobrushin-Kotecký-Shlosman theorem up to the critical temperature. Comm. Math. Phys. 199 117-167. · Zbl 0929.60076
[27] Kasteleyn, P. W. (1967). Graph theory and crystal physics. In Graph Theory and Theoretical Physics 43-110. Academic Press, London. · Zbl 0205.28402
[28] Laanait, L., Messager, A. and Ruiz, J. (1986). Phases coexistence and surface tensions for the Potts model. Comm. Math. Phys. 105 527-545.
[29] Liggett, T. M., Schonmann, R. H. and Stacey, A. M. (1997). Domination by product measures. Ann. Probab. 25 71-95. · Zbl 0882.60046
[30] Mc Coy, B. M. and Wu, T. T. (1973). The Two Dimensional Ising Model . Harvard Univ. Press, Cambridge, MA.
[31] Messikh, R. J. (2009). On the surface tension of the 2d Ising model near criticality.
[32] Onsager, L. (1944). Crystal statistics. I. A two-dimensional model with an order-disorder transition. Phys. Rev. (2) 65 117-149. · Zbl 0060.46001
[33] Pfister, C.-E. (1991). Large deviations and phase separation in the two-dimensional Ising model. Helv. Phys. Acta 64 953-1054.
[34] Pfister, C.-E. and Velenik, Y. (1997). Large deviations and continuum limit in the 2D Ising model. Probab. Theory Related Fields 109 435-506. · Zbl 0904.60022
[35] Pisztora, Á. (1996). Surface order large deviations for Ising, Potts and percolation models. Probab. Theory Related Fields 104 427-466. · Zbl 0842.60022
[36] Schramm, O. (2001). A percolation formula. Electron. Comm. Probab. 6 115-120. · Zbl 1008.60100
[37] Smirnov, S. (2001). Critical percolation in the plane: Conformal invariance, Cardy’s formula, scaling limits. C. R. Acad. Sci. Paris Sér. I Math. 333 239-244. · Zbl 0985.60090
[38] Smirnov, S. and Werner, W. (2001). Critical exponents for two-dimensional percolation. Math. Res. Lett. 8 729-744. · Zbl 1009.60087
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.