zbMATH — the first resource for mathematics

Balance equation and the quasitemperature of channeled particles in equilibrium. (English. Russian original) Zbl 1185.82023
Theor. Math. Phys. 161, No. 2, 1540-1548 (2009); translation from Teor. Mat. Fiz. 161, No. 2, 256-266 (2009).
Summary: Using the methods of nonequilibrium statistical thermodynamics, we obtain the equation for the transverse energy and momentum balance for fast atomic particles moving in the planar channeling regime. Based on the solution of this equation, we obtain an expression for the transverse quasitemperature in the quasiequilibrium in terms of the basic parameters of the theory. We show that the equilibrium quasitemperature of channeled particles is established because of particle diffusion in the space of transverse energies (subsystem “heating”), the dissipative process (“cooling”), and the anharmonic effects of particle oscillations between the channel walls (the redistribution of energies over the oscillatory degrees of freedom is the internal thermalization of the subsystem). According to the estimates for particles with an energy of the order of 1 MeV, the quasitemperature values are in the characteristic temperature range for a low-temperature plasma.
82B30 Statistical thermodynamics
82C35 Irreversible thermodynamics, including Onsager-Machlup theory
Full Text: DOI
[1] M. Goldman, Spin Temperature and Nuclear Magnetic Resonance in Solids, Clarendon, Oxford (1970).
[2] I. P. Shkarofski, T. W. Johnston, and M. P. Bachynski, The Particle Kinetics of Plasmas, Addison-Wesley, Reading, Mass. (1966).
[3] L. S. Polak, ed., Features of the Physics and Chemistry of a Low-Temperature Plasma [in Russian], Nauka, Moscow (1971).
[4] Ya. A. Kashlev, Phys. Stat. Sol. (b), 190, 379–391 (1995). · doi:10.1002/pssb.2221900206
[5] Yu. A. Kashlev, Theor. Math. Phys., 126, 258–269 (2001). · Zbl 1099.82014 · doi:10.1023/A:1005208130112
[6] J. Lindhard, Mat.-Fys. Medd. Danske Vid. Selsk., 34, No. 14, 1 (1965).
[7] D. N. Zubarev, J. Sov. Math., 16, 1509–1571 (1981). · Zbl 0463.60089 · doi:10.1007/BF01091712
[8] K. Yamada, Prog. Theoret. Phys., 28, 299–314 (1962). · Zbl 0114.21803 · doi:10.1143/PTP.28.299
[9] Y. Nagaoka, Prog. Theoret. Phys., 26, 590–610 (1961). · Zbl 0105.22704 · doi:10.1143/PTP.26.589
[10] Yu. Kagan and Yu. V. Kononets, Sov. Phys. JETP, 37, 530 (1973).
[11] J. A. Ellison and S. T. Picraux, Phys. Rev. B, 18, 1028–1038 (1978). · doi:10.1103/PhysRevB.18.1028
[12] M. Rahman, Phys. Rev. B, 52, 3383–3399 (1995). · doi:10.1103/PhysRevB.52.3383
[13] S. P. Ali and D. F. Gallaher, J. Phys. C, 7, 2434–2446 (1974). · doi:10.1088/0022-3719/7/14/008
[14] F. Abel, G. Amsel, M. Braneaux, C. Cohen, and A. L’Hoir, Phys. Rev. B, 12, 4617–4627 (1975). · doi:10.1103/PhysRevB.12.4617
[15] N. W. Ashcroft and N. D. Mermin, Solid State Physics, Holt, Rinehart and Winston, New York (1976). · Zbl 1107.82300
[16] Yu. A. Kashlev, Theor. Math. Phys., 19, 600–609 (1974). · doi:10.1007/BF01035573
[17] Yu. A. Kashlev, ”Nonequilibrium statistical theory of the rate of diffusion processes in solids (diffusive dechannelization and diffusive migration) [in Russian],” Doctoral dissertation, Steklov Math. Inst., Moscow (1982).
[18] E. M. Lifschitz and L. P. Pitaevskii, Physical Kinetics [in Russian] (Vol. 10 of Course of Theoretical Physics by L. D. Landau and E. M. Lifshitz), Nauka, Moscow (1979); English transl., Pergamon, Oxford (1981).
[19] C. Kittel, Elementary Statistical Physics, Wiley, New York (1958).
[20] Yu. A. Kashlev and N. M. Sadykov, Theor. Math. Phys., 116, 1083–1093 (1998). · Zbl 0942.82016 · doi:10.1007/BF02557149
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.