zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A fast, stable and accurate numerical method for the Black-Scholes equation of American options. (English) Zbl 1185.91175
Summary: In this work we improve the algorithm of {\it H. Han} and {\it X. Wu} [SIAM J. Numer. Anal. 41, No. 6, 2081--2095 (2003; Zbl 1130.91336)] for American options with respect to stability, accuracy and order of computational effort. We derive an exact discrete artificial boundary condition (ABC) for the Crank-Nicolson scheme for solving the Black-Scholes equation for the valuation of American options. To ensure stability and to avoid any numerical reflections we derive the ABC on a purely discrete level. Since the exact discrete ABC includes a convolution with respect to time with a weakly decaying kernel, its numerical evaluation becomes very costly for large-time simulations. As a remedy we construct approximate ABCs with a kernel having the form of a finite sum-of-exponentials, which can be evaluated in a very efficient recursion. We prove a simple stability criteria for the approximated artificial boundary conditions. Finally, we illustrate the efficiency and accuracy of the proposed method on several benchmark examples and compare it to previously obtained discretized ABCs of Mayfield and Han and Wu.

91G20Derivative securities
91G60Numerical methods in mathematical finance
65M06Finite difference methods (IVP of PDE)
Full Text: DOI