zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Set-membership filtering for systems with sensor saturation. (English) Zbl 1185.93049
Summary: This paper addresses the set-membership filtering problem for a class of discrete time-varying systems with sensor saturation in the presence of unknown-but-bounded process and measurement noises. A sufficient condition for the existence of set-membership filter is derived. A convex optimisation method is proposed to determine a state estimation ellipsoid that is a set of states compatible with sensor saturation and unknown-but-bounded process and measurement noises. A recursive algorithm is developed for computing the ellipsoid that guarantees to contain the true state by solving a time-varying linear matrix inequality. Simulation results are provided to demonstrate the effectiveness of the proposed method.

93B51Design techniques in systems theory
93C55Discrete-time control systems
93C10Nonlinear control systems
Full Text: DOI
[1] Anderson, B. D. O.; Moore, J. B.: Optimal filtering, (1979) · Zbl 0688.93058
[2] Bertsekas, D. P.; Rhodes, I. B.: Recursive state estimation for a set-membership description of uncertainty, IEEE transactions on automatic control 16, No. 2, 117-128 (1971)
[3] Boyd, S.; Ghaoui, L. E.; Feron, E.; Balakrishnan, V.: Linear matrix inequalities in system and control theory, (1994) · Zbl 0816.93004
[4] Cao, Y. -Y.; Lin, Z.; Chen, B. M.: An output feedback H$\infty $controller design for linear systems subject to sensor nonlinearities, IEEE transactions on circuits and systems-I: fundamental theory and applications 50, No. 7, 914-921 (2003)
[5] Durieu, C.; Walter, E.; Polyak, B.: Multi-input multi-output ellipsoidal state bounding, Journal of optimization theory and applicationsand applications 111, No. 2, 273-303 (2001) · Zbl 1080.93656 · doi:10.1023/A:1011978200643
[6] El Ghaoui, L.; Calafiore, G.: Robust filtering for discrete-time systems with bounded noise and parametric uncertainty, IEEE transactions on automatic control 46, No. 7, 1084-1089 (2001) · Zbl 1008.93065 · doi:10.1109/9.935060
[7] Hu, T.; Lin, Z.: Control systems with actuator saturation: analysis and design, (2001) · Zbl 1061.93003
[8] Khalil, H.: Nonlinear systems, (1996) · Zbl 0842.93033
[9] Koplon, R. B.; Hantus, M. L. J.; Sontag, E. D.: Observability of linear systems with saturated outputs, Linear algebra and its applications 205, No. 1, 909-936 (1994) · Zbl 0806.93006 · doi:10.1016/0024-3795(94)90374-3
[10] Kreisselmeier, G.: Stabilization of linear systems in the presence of output measurement saturation, Systems &; control letters 29, No. 1, 27-30 (1996) · Zbl 0875.93476 · doi:10.1016/0167-6911(96)00048-5
[11] Kurzhanski, A. B.; Valyi, I.: Ellipsoidal calculus for estimation and control, (1996)
[12] Li, X. R.; Jilkov, V. P.: Survey of maneuvering target tracking. Part I: Dynamic models, IEEE transactions on aerospace and electronic systems 39, No. 4, 1333-1364 (2003)
[13] Lin, Z.; Hu, T.: Semi-global stabilization of linear systems subject to output saturation, Systems and control letters 43, No. 3, 211-217 (2001) · Zbl 0974.93053 · doi:10.1016/S0167-6911(01)00099-8
[14] Löfberg, J. (2004). YALMIP: A toolbox for modelling and optimization in Matlab. In Proceedings of the IEEE CACSD symposium, Taipei, Taiwan
[15] Maskarov, D. G.; Norton, J. P.: State bounding with ellipsoidal set description of the uncertainty, International journal of control 65, No. 5, 847-866 (1996) · Zbl 0862.93038 · doi:10.1080/00207179608921725
[16] Morrell, D. R.; Stirling, W. C.: Set-valued filtering and smoothing, IEEE transactions on systems, man and cybernetics 21, No. 1, 184-193 (1991) · Zbl 0728.93074 · doi:10.1109/21.101148
[17] Nesterov, Y.; Nemirovski, A.: Interior point polynomial methods in convex programming: theory and applications, (1994)
[18] Petersen, I. R.; Savkin, A. V.: Robust Kalman filtering for signals and systems with large uncertainties, (1999) · Zbl 1033.93002
[19] Polyak, B., Nazin, S., Durieu, C., & Walter, E. (2002). Ellipsoidal estimation under model uncertainty. 15th Triennial World Congress, Barcelona, Spain · Zbl 1056.93063
[20] Ra, W. S.; Jin, S. H.; Park, J. B.: Set-valued estimation approach to recursive robust H$\infty $filtering, IEE Proceedings-control theory and applications 151, No. 6, 773-782 (2004)
[21] Sadhar, S. I., & Rajagopalan, A. N. (2004). Restoration of images degraded by sensor non-linearity. European signal processing conference(EUSIPCO 04), Austria
[22] Savkin, A. V.; Petersen, I. R.: Recursive state estimation for uncertain systems with an integral quadratic constraint, IEEE transactions on automatic control 40, No. 6, 1080-1083 (1995) · Zbl 0829.93060 · doi:10.1109/9.388688
[23] Savkin, A. V.; Petersen, I. R.: Robust state estimation and model validation for discrete-time uncertain systems with a deterministic description of noise and uncertainty, Automatica 34, No. 2, 271-274 (1998) · Zbl 0917.93011 · doi:10.1016/S0005-1098(97)00188-X
[24] Schweppe, F. C.: Recursive state estimation: unknown but bounded errors and system inputs, IEEE transactions on automatic control 13, No. 1, 22-28 (1968)
[25] Skelton, R. E.; Iwasaki, T.; Grigoriadis, K.: A unified algebraic approach to linear control design, (1998)
[26] Vandenberghe, L.; Boyd, S.: Semidefinite programming, SIAM review 38, No. 1, 49-95 (1996) · Zbl 0845.65023 · doi:10.1137/1038003
[27] Witsenhausen, H. S.: Sets of possible states of linear systems given perturbed observations, IEEE transactions on automatic control 13, No. 5, 556-558 (1968)
[28] Xiao, Y.; Cao, Y. -Y.; Lin, Z. (: Robust filtering for discrete-time systems with saturation and its application to transmultiplexers, IEEE transactions on signal processing 52, No. 5, 1266-1277 (2004)
[29] Yang, F.; Hung, Y. S.: Robust mixed H2/H$\infty $filtering with regional pole assignment for uncertain discrete-time systems, IEEE transactions on circuits and systems-I: fundamental theory and applications 49, No. 8, 1236-1241 (2002)
[30] Yang, F.; Wang, Z.; Hung, Y. S.: Robust Kalman filtering for discrete time-varying uncertain systems with multiplicative noise, IEEE transactions on automatic control 47, No. 7, 1179-1183 (2002)
[31] Yang, F.; Wang, Z.; Ho, D. W. C.; Liu, X.: Robust H2 filtering for a class of systems with stochastic nonlinearities, IEEE transactions on circuits and systems-II: analog and digital signal processing 53, No. 3, 235-239 (2006)
[32] Zuo, Z.; Wang, J.; Huang, L.: Output feedback H$\infty $controller design for linear discrete-time systems with sensor nonlinearities, IEE Proceedings-control theory and applications 152, No. 1, 19-26 (2005)