×

Global continuous finite-time tracking of robot manipulators. (English) Zbl 1185.93091

Summary: This paper addresses the global finite-time tracking of robot manipulators. The commonly used linear Proportional-Derivative (PD) plus (PD+) scheme is extended to achieve the global finite-time tracking by replacing the linear errors with nonsmooth but continuous exponential errors. The global finite-time stability of the closed loop with the proposed nonlinear PD plus control is shown using Lyapunov’s direct method and finite-time stability. Simulations performed on a two-degree-of-freedom manipulator are provided to illustrate the effectiveness and the improved performance of the formulated algorithm.

MSC:

93C85 Automated systems (robots, etc.) in control theory
68T40 Artificial intelligence for robotics
93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, \(L^p, l^p\), etc.) in control theory
93B35 Sensitivity (robustness)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Sage, Robust control of robot manipulators: a survey, International Journal of Control 72 (6) pp 1498– (1999) · Zbl 0941.93501
[2] Ortega, Adaptive motion control of rigid robots: a tutorial, Automatica 25 (6) pp 877– (1989) · Zbl 0695.93064
[3] Arimoto, Control Theory of Non-linear Mechanical Systems: A Passivity-based and Circuit-theoretic Approach (1996) · Zbl 0857.93002
[4] Kasac, Global positioning of robot manipulators with mixed revolute and prismatic joints, IEEE Transactions on Automatic Control 51 (6) pp 1035– (2006) · Zbl 1366.93405
[5] Rocco, Stability of PID control for industrial robot arms, IEEE Transactions on Robotics and Automation 12 (4) pp 606– (1996)
[6] Jafarov, A new variable structure PID-controller design for robot manipulators, IEEE Transactions on Control Systems Technology 13 (1) pp 122– (2005)
[7] Arimoto S, Naniwa T, Parra-Vega V, Whitcomb L. A quasi-natural potential and its role in design of hyper-stable PID servo-loop for robotic systems. Proceedings of the CAI Pacific Symposium on Control and Industrial Automation Applications, Hong Kong, 1994; 110-117.
[8] Kelly, Global positioning of robot manipulators via PD control plus a class of nonlinear integral actions, IEEE Transactions on Automatic Control 43 (7) pp 934– (1998) · Zbl 0952.93093
[9] Cheah CC, Kawamura S, Arimoto S, Lee K. PID control for robotic manipulator with uncertain Jacobian matrix. Proceedings of the IEEE International Conference on Robotics and Automation, Detroit, MI, 1999; 494-499.
[10] Gorez, Globally stable PID-like control of mechanical systems, Systems and Control Letters 38 (1) pp 61– (1999) · Zbl 0948.93022
[11] Su, Integration of saturated PI synchronous control and PD feedback for control of parallel manipulators, IEEE Transactions on Robotics 22 (1) pp 202– (2006)
[12] Tomei, Adaptive PD controller for robot manipulators, IEEE Transactions on Robotics and Automation 7 (4) pp 565– (1991)
[13] Ortega, A semiglobally stable output-feedback PI2D regulator for robot manipulators, IEEE Transactions on Automatic Control 40 (8) pp 1432– (1995) · Zbl 0832.93042
[14] Su YX, Müller PC, Zheng CH. A global asymptotic stable output feedback PID regulator for robot manipulators. Proceedings of the IEEE International Conference on Robotics and Automation, Rome, Italy, 2007; 4484-4489.
[15] Kawamura S, Miyazaki F, Arimoto S. Is a local linear PD feedback control law effective for trajectory tracking of robot motion? Proceedings of the IEEE Conference on Robotics and Automation, Philadelphia, PA, U.S.A., 1988; 1335-1340.
[16] Berghuis, Robust-control of robots via linear estimated state-feedback, IEEE Transactions on Automatic Control 39 (10) pp 2159– (1994) · Zbl 0925.93204
[17] Qu, Robust tracking control of robots by a linear feedback law, IEEE Transactions on Automatic Control 36 (9) pp 1081– (1991) · Zbl 0754.93054
[18] Liu, Decentralized control of robot manipulators: nonlinear and adaptive approaches, IEEE Transactions on Automatic Control 44 (2) pp 357– (1999) · Zbl 0958.93072
[19] Tarokh, Decoupled nonlinear three-term controllers for robot trajectory tracking, IEEE Transactions on Robotics and Automation 15 (2) pp 369– (1999)
[20] Alvarez-Ramirez, On the PID tracking control of robot manipulators, Systems and Control Letters 42 (1) pp 37– (2001) · Zbl 0974.93039
[21] Parra-Vega, Dynamic sliding PID control for tracking of robot manipulators: theory and experiments, IEEE Transactions on Robotics and Automation 19 (6) pp 967– (2003)
[22] Kuc, An adaptive PID learning control of robot manipulators, Automatica 36 (5) pp 717– (2000) · Zbl 0973.93011
[23] Stepanenko, Variable structure control of robotic manipulator with PID sliding surfaces, International Journal of Robust and Nonlinear Control 8 (1) pp 79– (1998) · Zbl 0903.93015
[24] Zhang, Global adaptive output feedback tracking control of robot manipulators, IEEE Transactions on Automatic Control 45 (6) pp 1203– (2000) · Zbl 0972.93045
[25] Tang, Decentralized robust control of mechanical systems, IEEE Transactions on Automatic Control 45 (4) pp 771– (2000) · Zbl 1009.93058
[26] Hsu, A fully adaptive decentralized control of robot manipulators, Automatica 42 (10) pp 1761– (2006) · Zbl 1114.93066
[27] Paden, Global asymptotically stable PD+ controller for robot manipulator, International Journal of Control 47 (6) pp 1697– (1988) · Zbl 0649.93052
[28] Loria, Bounded output feedback tracking control of fully-actuated Euler-Lagrange systems, Systems and Control Letters 33 (3) pp 151– (1998) · Zbl 0902.93034
[29] Kelly, PD control with computed feedforward of robot manipulators: a design procedure, IEEE Transactions on Robotics and Automation 10 (4) pp 566– (1994)
[30] Santibanez, PD control with feedforward compensation for robot manipulators: analysis and experimentation, Robotica 19 (1) pp 11– (2001)
[31] Bhat, Continuous finite-time stabilization of the translational and rotational double integrators, IEEE Transactions on Automatic Control 43 (5) pp 678– (1998) · Zbl 0925.93821
[32] Hong, On an output finite-time stabilization problem, IEEE Transactions on Automatic Control 46 (2) pp 305– (2001) · Zbl 0992.93075
[33] Hong, Finite-time stabilization of nonlinear systems with parametric and dynamic uncertainties, IEEE Transactions on Automatic Control 51 (12) pp 1950– (2006)
[34] Qian, Recursive observer design, homogeneous approximation, and nonsmooth output feedback stabilization of nonlinear systems, IEEE Transactions on Automatic Control 51 (9) pp 1457– (2006) · Zbl 1366.93523
[35] Huang, Global finite-time stabilization of a class of uncertain nonlinear systems, Automatica 41 (5) pp 881– (2005)
[36] Hong, Finite-time control for robot manipulators, Systems and Control Letters 46 (4) pp 243– (2002) · Zbl 0994.93041
[37] Man, A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators, IEEE Transactions on Automatic Control 39 (12) pp 2464– (1994) · Zbl 0825.93551
[38] Tang, Terminal sliding mode control for rigid robots, Automatica 34 (1) pp 51– (1998) · Zbl 0908.93042
[39] Parra-Vega, Perfect position/force tracking of robots with dynamical terminal sliding mode control, Journal of Robotic Systems 18 (9) pp 517– (2001) · Zbl 1011.70007
[40] Yu, Continuous finite-time control for robotic manipulators with terminal sliding mode, Automatica 41 (11) pp 1957– (2005)
[41] Lewis, Robot Manipulator Control: Theory and Practice (2004)
[42] Slotine, Applied Nonlinear Control (1991)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.