zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Robust stability criteria for systems with interval time-varying delay and nonlinear perturbations. (English) Zbl 1185.93111
Summary: This paper considers the robust stability for a class of linear systems with interval time-varying delay and nonlinear perturbations. A Lyapunov-Krasovskii functional, which takes the range information of the time-varying delay into account, is proposed to analyze the stability. A new approach is introduced for estimating the upper bound on the time derivative of the Lyapunov-Krasovskii functional. On the basis of the estimation and by utilizing free-weighting matrices, new delay-range-dependent stability criteria are established in terms of linear matrix inequalities. Numerical examples are given to show the effectiveness of the proposed approach.

MSC:
93D09Robust stability of control systems
93C73Perturbations in control systems
93C10Nonlinear control systems
WorldCat.org
Full Text: DOI
References:
[1] Fridman, E.; Shaked, U.: Delay-dependent stability and H$\infty $control: constant and time-varying delays, Internat. J. Control 76, 48-60 (2003) · Zbl 1023.93032 · doi:10.1080/0020717021000049151
[2] Gu, K.; Kharitonov, V.; Chen, J.: Stability of time-delay systems, (2003) · Zbl 1039.34067
[3] Hale, J.; Lunel, S. M. V.: Introduction of functional differential equations, (1993) · Zbl 0787.34002
[4] Xu, S.; Lam, J.: A survey of linear matrix inequality techniques in stability analysis of delay systems, Internat. J. Systems sci. 39, 1095-1113 (2008) · Zbl 1156.93382 · doi:10.1080/00207720802300370
[5] Su, H.; Zhang, W.: Second-order consensus of multiple agents with coupling delay, Commun. theor. Phys. 51, 101-109 (2009) · Zbl 1172.93305 · doi:10.1088/0253-6102/51/1/20
[6] Gao, H.; Chen, T.; Lam, J.: A new delay system approach to network-based control, Automatica 44, 39-52 (2008) · Zbl 1138.93375 · doi:10.1016/j.automatica.2007.04.020
[7] Zhang, W.; Branicky, M.; Phillips, S.: Stability of networked control systems, IEEE control syst. Mag. 2, 84-99 (2001)
[8] Jiang, X.; Han, Q.: Delay-dependent robust stability for uncertain linear systems with interval time-varying delay, Automatica 42, 1059-1065 (2006) · Zbl 1135.93024 · doi:10.1016/j.automatica.2006.02.019
[9] Jiang, X.; Han, Q.: New stability criteria uncertain linear systems with interval time-varying delay, Automatica 44, 2680-2685 (2008) · Zbl 1155.93405 · doi:10.1016/j.automatica.2008.02.020
[10] Li, T.; Guo, L.; Zhang, Y.: Delay-range-dependent robust stability and stabilization for uncertain systems with time-varying delay, Internat. J. Robust nonlinear control 18, 1372-1387 (2008) · Zbl 1298.93263
[11] Li, T.; Guo, L.; Wu, L.: Simplified approach to the asymptotical stability of linear systems with interval time-varying delay, IET control theory appl. 3, No. 2, 252-260 (2009)
[12] Peng, C.; Tian, Y.: Improved delay-dependent robust stability criteria for uncertain systems with interval time-varying delay, IET control theory appl. 2, 752-761 (2008)
[13] Peng, C.; Tian, Y.: Delay-dependent robust stability criteria for uncertain systems with interval time-varying delay, J. comput. Appl. math. 214, 480-494 (2008) · Zbl 1136.93437 · doi:10.1016/j.cam.2007.03.009
[14] Shao, H.: Improved delay-dependent stability criteria for systems with a delay varying in a range, Automatica 44, 3215-3218 (2008) · Zbl 1153.93476 · doi:10.1016/j.automatica.2008.09.003
[15] Yue, D.; Tian, E.; Zhang, Y.: A piecewise analysis method to stability analysis of linear continuous/discrete systems with time-varying delay, Internat. J. Robust nonlinear control, 1493-1518 (2009) · Zbl 1298.93259
[16] Zhang, B.; Xu, S.; Zou, Y.: Improved stability criterion and its applications in delayed controller design for discrete-time systems, Automatica 44, 2963-2967 (2008) · Zbl 1152.93453 · doi:10.1016/j.automatica.2008.04.017
[17] Zhu, X.; Yang, G.: Jensen integral inequality approach to stability analysis of continuous-time systems with time-varying delay, IET control theory appl. 2, 524-534 (2008)
[18] Cao, Y.; Lam, J.: Computation of robust stability bounds for time-delay systems with nonlinear time-varying perturbation, Internat. J. Systems sci. 31, 350-365 (2000) · Zbl 1080.93519 · doi:10.1080/002077200291190
[19] Gao, H.; Chen, T.: New results on stability of discrete-time systems with time-varying state delay, IEEE trans. Automat. control 52, 328-334 (2007)
[20] Han, Q.: Robust stability for a class of linear systems with time-varying delay and nonlinear perturbations, Comput. math. Appl. 47, 1201-1209 (2004) · Zbl 1154.93408 · doi:10.1016/S0898-1221(04)90114-9
[21] He, Y.; Wang, Q.; Lin, C.; Wu, M.: Delay-range-dependent stability for systems with time-varying delay, Automatica 43, 371-376 (2007) · Zbl 1111.93073 · doi:10.1016/j.automatica.2006.08.015
[22] He, Y.; Wu, M.; She, J.; Liu, G.: Parameter-dependent Lyapunov functional for stability of time-delay systems with polytopic-type uncertainties, IEEE trans. Automat. control 49, 828-832 (2004)
[23] Moon, Y. S.; Park, P.; Kwon, W. H.; Lee, Y. S.: Delay-dependent robust stabilization of uncertain state-delayed systems, Internat. J. Control 74, 1447-1455 (2001) · Zbl 1023.93055 · doi:10.1080/00207170110067116
[24] Park, P. G.; Ko, J. W.: Stability and robust stability for systems with a time-varying delay, Automatica 43, 1855-1858 (2007) · Zbl 1120.93043 · doi:10.1016/j.automatica.2007.02.022
[25] Wu, M.; He, Y.; She, J. H.; Liu, G. P.: Delay-dependent criteria for robust stability of time-varying systems, Automatica 40, 1201-1209 (2004) · Zbl 1059.93108 · doi:10.1016/j.automatica.2004.03.004
[26] Zuo, Z.; Wang, Y.: New stability criterion for a class of linear systems with time-varying delay and nonlinear perturbations, IEE proc. Control theory appl. 153, 623-626 (2006)
[27] Zuo, Z.; Wang, J.; Huang, L.: Robust stabilization for nonlinear discrete-time systems, Internat. J. Control 77, 384-388 (2004) · Zbl 1063.93044 · doi:10.1080/00207170410001663543