zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Synchronization of Takagi-Sugeno fuzzy stochastic discrete-time complex networks with mixed time-varying delays. (English) Zbl 1185.93145
Summary: We propose and investigate a new general model of fuzzy stochastic discrete-time complex networks (SDCNs) described by Takagi-Sugeno (T-S) fuzzy model with discrete and distributed time-varying delays. The proposed model takes some well-studied models as special cases. By employing a new Lyapunov functional candidate, we utilize some stochastic analysis techniques and Kronecker product to deduce delay-dependent synchronization criteria that ensure the mean-square synchronization of the proposed T-S fuzzy SDCNs with mixed time-varying delays. These sufficient conditions are computationally efficient as it can be solved numerically by the LMI toolbox in Matlab. A numerical simulation example is provided to verify the effectiveness and the applicability of the proposed approach.

93E15Stochastic stability
93C42Fuzzy control systems
60K30Applications of queueing theory
90B15Network models, stochastic (optimization)
90C70Fuzzy programming
Full Text: DOI
[1] Watts, D. J.; Strogatz, S. H.: Collective dynamical of’small-world’ networks, Nature 393, 440-442 (1998)
[2] Barabási, A. L.; Albert, R.: Emergence of scaling in random networks, Science 286, 509-512 (1999) · Zbl 1226.05223 · doi:10.1126/science.286.5439.509
[3] Luo, A. C. J.: Global transversality, resonance and chaotic dynamics, (2008) · Zbl 1222.37003
[4] Lü, J.; Yu, X.; Chen, G. R.; Cheng, D.: Characterizing the synchronizability of small-world dynamical networks, IEEE trans. Circuits syst. I 5116, No. 4, 787-796 (2004)
[5] Wu, C. W.; Chua, L. O.: Synchronization in an array of linearly coupled dynamical systems, IEEE trans. Circuits syst. I 42, No. 8, 430-447 (1995) · Zbl 0867.93042 · doi:10.1109/81.404047
[6] Wang, X. F.; Chen, G. R.: Synchronization in small-word dynamical networks, Int. J. Bifur. chaos 12, No. 1, 187-192 (2002)
[7] Lü, J.; Chen, G. R.: A time-varying complex dynamical network model and its controlled synchronization criteria, IEEE trans. Automat. control 1950, 841-846 (2005)
[8] Cao, J.; Wang, Z.; Sun, Y.: Synchronization in an array of linearly stochastically coupled networks with time delays, Physica A 385, 718-728 (2007)
[9] Cao, J.; Chen, G. R.; Li, P.: Global synchronization in an array of delayed neural networks with hybrid coupling, IEEE trans. SMC-B 38, 488-498 (2008)
[10] Yu, W.; Cao, J.; Chen, G.; Lü, J.: Local synchronization of a complex network model, IEEE trans. Syst., man, cybernet. B 39, 230-241 (2009)
[11] Tang, Y.; Fang, J.; Miao, Q.: On the exponential synchronization of stochastic jumping chaotic neural networks with mixed delays and sector-bounded non-linearities, Neurocomputing 72, 1694-1701 (2009)
[12] Tang, Y.; Qiu, R. H.; Fang, J.; Miao, Q.; Xia, M.: Adaptive lag synchronization in unknown stochastic chaotic neural networks with discrete and distributed time-varying delays, Phys. lett. A 372, 4425-4433 (2008) · Zbl 1221.82078 · doi:10.1016/j.physleta.2008.04.032
[13] Tang, Y.; Wang, Z. D.; Fang, J.: Pinning control of fractional-order weighted complex networks, Chaos 19, 013112 (2009) · Zbl 1311.34018
[14] Liang, J.; Wang, Z. D.; Liu, Y.; Liu, X.: Global synchronization control of general delayed discrete-time networks with stochastic coupling and disturbances, IEEE trans. SMC-part B 38, 1073-1083 (2008)
[15] Liu, Y.; Wang, Z. D.; Liu, X.: State estimation for discrete-time Markovian jumping neural networks with mixed mode-dependent delays, Phys. lett. A 372, 7147-7155 (2008) · Zbl 1227.92002 · doi:10.1016/j.physleta.2008.10.045
[16] Liu, Y.; Wang, Z. D.; Liang, J.; Liu, X.: Synchronization and state estimation for discrete-time complex networks with distributed delays, IEEE trans. SMC-part B 38, 1314-1325 (2008)
[17] Liang, J.; Wang, Z. D.; Liu, Y.; Liu, X.: Robust synchronization of an array of coupled stochastic discrete-time delayed neural networks, IEEE trans. Neural networks 19, 1910-1921 (2008)
[18] Lu, W. L.; Chen, T. P.: Synchronization of coupled connected neural networks with delays, IEEE trans. Circuits syst. I 51, 2491-2503 (2004)
[19] Lu, W. L.; Chen, T. P.: Synchronization analysis of linearly coupled networks of discrete time systems, Phys. D: Nonlinear phenomena 198, 148-168 (2004) · Zbl 1071.39011 · doi:10.1016/j.physd.2004.08.024
[20] Bucolo, M.; Fazzino, S.; La Rosa, M.; Fortuna, L.: Small-world networks of fuzzy chaotic oscillators, Chaos, solitons fractals 17, 557 (2003) · Zbl 1036.94544 · doi:10.1016/S0960-0779(02)00398-3
[21] Ham, C.; Qu, Z.; Johason, R.: Robust fuzzy control for robot manipulators, IEE proc. Control theory appl. 147, 212-216 (2000)
[22] Hsu, F.; Fu, L.: Intelligent robot deburring using adaptive fuzzy hybrid position/force control, IEEE trans. Robotics automat. 16, 325-335 (2000)
[23] Lin, F.; Wai, R.: Robust recurrent fuzzy neural network control for linear synchronous motor drive system, Neurocomputing 50, 365-390 (2003) · Zbl 1006.68824 · doi:10.1016/S0925-2312(02)00572-6
[24] Takagi, T.; Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control, IEEE trans. SMC 15, 116-132 (1985) · Zbl 0576.93021
[25] Zhang, B. Y.; Xu, S. Y.; Zong, G. D.; Zou, Y.: Delay-dependent stabilization for stochastic fuzzy systems with time delays, Fuzzy sets syst. 158, 2238-2250 (2007) · Zbl 1122.93051 · doi:10.1016/j.fss.2007.05.011
[26] Lou, X.; Cui, B.: Robust asymptotic stability of uncertain fuzzy BAM neural networks with time-varying delays, Fuzzy sets syst. 158, 2746-2756 (2007) · Zbl 1133.93366 · doi:10.1016/j.fss.2007.07.015
[27] Y. Zhao, H. Gao, J. Lam, Baozhu Du, Stability and stabilization of delayed T -- S fuzzy systems: a delay partitioning approach, IEEE Trans. Fuzzy Syst., in press.
[28] Wei, G.; Feng, G.; Wang, Z.: Robust H$\infty $ control for discrete-time fuzzy systems with infinite distributed delays, IEEE trans. Fuzzy syst. 17, No. 1, 224-232 (2009)
[29] Yue, D.; Tian, E.; Zhang, Y.; Peng, C.: Delay-distribution-dependent stability and stabilization of T -- S fuzzy systems with probabilistic interval delay, IEEE trans. SMC-B 39, 503-516 (2009)
[30] Lin, C.; Wang, Q. G.; Lee, Y.; He, T. H.; Chen, B.: Observer-based H$\infty $ fuzzy control design for T -- S fuzzy systems with state delays, Automatica 44, No. 3, 868-874 (2008) · Zbl 1283.93164
[31] Chen, B.; Liu, X. P.: Delay-dependent robust H$\infty $ control for T -- S fuzzy systems with time delay, IEEE trans. Fuzzy syst. 13, No. 4, 544-556 (2005)
[32] Yoneyama, J.: New delay-dependent approach to robust stability and stabilization for Takagi -- sugeno fuzzy time-delay systems, Fuzzy sets syst. 158, 2225-2337 (2007) · Zbl 1122.93050 · doi:10.1016/j.fss.2007.03.022
[33] Zhang, B.; Xu, S.: Delay-dependent robust H$\infty $ control for uncertain discrete-time fuzzy systems with time-varying delays, IEEE trans. Fuzzy syst. 17, 809-823 (2009)
[34] Feng, G.; Chen, M.; Sun, D.; Zhang, T. J.: Approaches to robust filtering design of discrete time fuzzy dynamic systems, IEEE trans. Fuzzy syst. 16, No. 2, 331-340 (2008)
[35] Zhang, H. G.; Yang, D. D.; Chai, T. Y.: Guaranteed cost networked control for T -- S fuzzy systems with time delays, IEEE trans. SMC part C 37, No. 2, 160-172 (2007)
[36] Wu, H.; Li, H. X.: New approach to delay-dependent stability analysis and stabilization for continuous-time fuzzy control systems with time-varying delay, IEEE trans. Fuzzy syst. 15, No. 3, 482-493 (2007)