×

zbMATH — the first resource for mathematics

Neumann problems associated to nonhomogeneous differential operators in Orlicz-Sobolev spaces. (English) Zbl 1186.35065
Summary: We study a nonlinear Neumann boundary value problem associated to a nonhomogeneous differential operator. Taking into account the competition between the nonlinearity and the bifurcation parameter, we establish sufficient conditions for the existence of nontrivial solutions in a related Orlicz-Sobolev space.

MSC:
35J60 Nonlinear elliptic equations
35J70 Degenerate elliptic equations
58E05 Abstract critical point theory (Morse theory, Lyusternik-Shnirel’man theory, etc.) in infinite-dimensional spaces
35J20 Variational methods for second-order elliptic equations
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] Acerbi, Emilio; Mingione, Giuseppe, Regularity results for a class of functionals with non-standard growth, Arch. Ration. Mech. Anal., 156, 2, 121-140, (2001) · Zbl 0984.49020
[2] Adams, Robert A., Sobolev spaces, (1975), Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London · Zbl 0314.46030
[3] Brezis, Haïm, Analyse fonctionnelle, (1983), Masson, Paris · Zbl 0511.46001
[4] Chen, Yunmei; Levine, Stacey; Rao, Murali, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math., 66, 4, 1383-1406 (electronic), (2006) · Zbl 1102.49010
[5] Clément, Ph.; García-Huidobro, M.; Manásevich, R.; Schmitt, K., Mountain pass type solutions for quasilinear elliptic equations, Calc. Var. Partial Differential Equations, 11, 1, 33-62, (2000) · Zbl 0959.35057
[6] Clément, Philippe; de Pagter, Ben; Sweers, Guido; de Thélin, François, Existence of solutions to a semilinear elliptic system through Orlicz-Sobolev spaces, Mediterr. J. Math., 1, 3, 241-267, (2004) · Zbl 1167.35352
[7] Dankert, Gabriele, Sobolev Embedding Theorems in Orlicz Spaces, (1966) · Zbl 0287.46036
[8] Diening, Lars, Theorical and numerical results for electrorheological fluids, (2002) · Zbl 1022.76001
[9] Diening, Lars, Maximal function on Musielak-Orlicz spaces and generalized Lebesgue spaces, Bull. Sci. Math., 129, 8, 657-700, (2005) · Zbl 1096.46013
[10] Donaldson, Thomas K.; Trudinger, Neil S., Orlicz-Sobolev spaces and imbedding theorems, J. Functional Analysis, 8, 52-75, (1971) · Zbl 0216.15702
[11] Edmunds, D. E.; Lang, J.; Nekvinda, A., On \(L^{p(x)}\) norms, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 455, 1981, 219-225, (1999) · Zbl 0953.46018
[12] Edmunds, David E.; Rákosník, Jiří, Density of smooth functions in \(W^{k,p(x)}(Ω ),\) Proc. Roy. Soc. London Ser. A, 437, 1899, 229-236, (1992) · Zbl 0779.46027
[13] Edmunds, David E.; Rákosník, Jiří, Sobolev embeddings with variable exponent, Studia Math., 143, 3, 267-293, (2000) · Zbl 0974.46040
[14] Ekeland, I., On the variational principle, J. Math. Anal. Appl., 47, 324-353, (1974) · Zbl 0286.49015
[15] Fan, Xianling; Shen, Jishen; Zhao, Dun, Sobolev embedding theorems for spaces \(W^{k,p(x)}(Ω ),\) J. Math. Anal. Appl., 262, 2, 749-760, (2001) · Zbl 0995.46023
[16] Fan, Xianling; Zhao, Dun, On the spaces \(L^{p(x)}(Ω )\) and \(W^{m,p(x)}(Ω ),\) J. Math. Anal. Appl., 263, 2, 424-446, (2001) · Zbl 1028.46041
[17] Halsey, Thomas C., Electrorheological fluids, Science, 258, 5083, 761 -766, (1992)
[18] Kováčik, Ondrej; Rákosník, Jiří, On spaces \(L^{p(x)}\) and \(W^{k,p(x)},\) Czechoslovak Math. J., 41(116), 4, 592-618, (1991) · Zbl 0784.46029
[19] Lamperti, John, On the isometries of certain function-spaces, Pacific J. Math., 8, 459-466, (1958) · Zbl 0085.09702
[20] Marcellini, Paolo, Regularity and existence of solutions of elliptic equations with \(p,q\)-growth conditions, J. Differential Equations, 90, 1, 1-30, (1991) · Zbl 0724.35043
[21] Mihăilescu, Mihai; Pucci, Patrizia; Rădulescu, Vicenţiu, Nonhomogeneous boundary value problems in anisotropic Sobolev spaces, C. R. Math. Acad. Sci. Paris, 345, 10, 561-566, (2007) · Zbl 1127.35020
[22] Mihăilescu, Mihai; Rădulescu, Vicenţiu, A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 462, 2073, 2625-2641, (2006) · Zbl 1149.76692
[23] Mihăilescu, Mihai; Rădulescu, Vicenţiu, Existence and multiplicity of solutions for quasilinear nonhomogeneous problems: an Orlicz-Sobolev space setting, J. Math. Anal. Appl., 330, 1, 416-432, (2007) · Zbl 1176.35071
[24] Mihăilescu, Mihai; Rădulescu, Vicenţiu, On a nonhomogeneous quasilinear eigenvalue problem in Sobolev spaces with variable exponent, Proc. Amer. Math. Soc., 135, 9, 2929-2937 (electronic), (2007) · Zbl 1146.35067
[25] Mihăilescu, Mihai; Rădulescu, Vicenţiu, Continuous spectrum for a class of nonhomogeneous differential operators, Manuscripta Math., 125, 2, 157-167, (2008) · Zbl 1138.35070
[26] Musielak, J.; Orlicz, W., On modular spaces, Studia Math., 18, 49-65, (1959) · Zbl 0086.08901
[27] Musielak, Julian, Orlicz spaces and modular spaces, 1034, (1983), Springer-Verlag, Berlin · Zbl 0557.46020
[28] Nakano, Hidegorô, Modulared Semi-Ordered Linear Spaces, (1950), Maruzen Co. Ltd., Tokyo · Zbl 0041.23401
[29] O’Neill, R., Fractional integration in Orlicz spaces, Trans. Amer. Math. Soc., 115, 300-328, (1965) · Zbl 0132.09201
[30] Orlicz, Władysław, Über konjugierte exponentenfolgen, Studia Math., 3, 200-211, (1931) · Zbl 0003.25203
[31] Rajagopal, K. R.; Růžička, M., Mathematical modelling of electrorheological fluids, Cont. Mech. Term., 13, 59-78, (2001) · Zbl 0971.76100
[32] Růžička, M., Electrorheological fluids: modeling and mathematical theory, Sūrikaisekikenkyūsho Kōkyūroku, 1146, 16-38, (2000) · Zbl 0968.76531
[33] Struwe, Michael, Variational methods, 34, (1996), Springer-Verlag, Berlin · Zbl 0864.49001
[34] Zhikov, V. V., Averaging of functionals of the calculus of variations and elasticity theory, Izv. Akad. Nauk SSSR Ser. Mat., 50, 4, 675-710, 877, (1986) · Zbl 0599.49031
[35] Zhikov, V. V., Meyer-type estimates for solving the nonlinear Stokes system, Differ. Uravn., 33, 1, 107-114, 143, (1997) · Zbl 0911.35089
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.