zbMATH — the first resource for mathematics

The regularity of weak solutions of the 3D Navier-Stokes equations in \(B^{-1}_{\infty,\infty}\). (English) Zbl 1186.35137
Summary: We show that if a Leray-Hopf solution \(u\) of the three-dimensional Navier-Stokes equation belongs to \(C((0,T]; B^{-1}_{\infty,\infty})\) or its jumps in the \(B^{-1}_{\infty,\infty}\)-norm do not exceed a constant multiple of viscosity, then \(u\) is regular for \((0, T]\). Our method uses frequency local estimates of the nonlinear term, and yields an extension of the classical Ladyzhenskaya-Prodi-Serrin criterion.

35Q30 Navier-Stokes equations
76D03 Existence, uniqueness, and regularity theory for incompressible viscous fluids
76D05 Navier-Stokes equations for incompressible viscous fluids
35B65 Smoothness and regularity of solutions to PDEs
35D30 Weak solutions to PDEs
Full Text: DOI
[1] Bourgain, J., Pavlovic, N.: Ill-posedness of the Navier-Stokes equations in a critical space in 3D. arXiv:0807.0882 · Zbl 1161.35037
[2] Cannone, M.: Harmonic analysis tools for solving the incompressible Navier-Stokes equations. Handbook of Mathematical Fluid Dynamics, Vol. 3 (Eds. Friedlander, S., Serre, D.). Elsevier, 2003 · Zbl 1222.35139
[3] Cannone, M., Planchon, F.: More Lyapunov functions for the Navier-Stokes equations. The Navier-Stokes Equations: Theory and Numerical Methods (Varenna, 2000). Lecture Notes in Pure and Appl. Math. 223, Dekker, New York, 19-26, 2002 · Zbl 0999.35071
[4] Chemin, J.-Y., Gallagher, I.: Wellposedness and stability results for the Navier-Stokes equations on \({\mathbb{R}^3}\). Ann. Inst. H. Poincaré Anal. Non Linéaire (to appear) · Zbl 1165.35038
[5] Chen, Q.; Zhang, Z., Space-time estimates in the Besov spaces and the Navier-Stokes equations, Methods Appl. Anal., 13, 107-122, (2006) · Zbl 1185.35160
[6] Cheskidov, A.; Constantin, P.; Friedlander, S.; Shvydkoy, R., Energy conservation and Onsager’s conjecture for the Euler equations, Nonlinearity, 21, 1233-1252, (2008) · Zbl 1138.76020
[7] Escauriaza, L.; Seregin, G.; Šverák, V.\(, L\_{}\{3,∞\}\)-Solutions to the Navier-Stokes equations and backward uniqueness, Russ. Math. Surv., 58, 211-250, (2003) · Zbl 1064.35134
[8] Fujita, H.; Kato, T., On the Navier-Stokes initial problem I, Arch. Rational Mech. Anal., 16, 269-315, (1964) · Zbl 0126.42301
[9] Germain, P.: The second iterate for the Navier-Stokes equation. arXiv:0806.4525 · Zbl 1173.35097
[10] Giga, Y., Solutions for semilinear parabolic equations in \(L p\) and regularity of weak solutions of the Navier-Stokes system, J. Differ. Equ., 62, 186-212, (1986) · Zbl 0577.35058
[11] Koch, H.; Tataru, D., Well-posedness for the Navier-Stokes equations, Adv. Math., 157, 22-35, (2001) · Zbl 0972.35084
[12] Kozono, H.; Sohr, H., Regularity of weak solutions to the Navier-Stokes equations, Adv. Differ. Equ., 2, 535-554, (1997) · Zbl 1023.35523
[13] Ladyzhenskaya, O.A.: On the uniqueness and smoothness of generalized solutions to the Navier-Stokes equations. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI)5, 169-185 (1967); English transl. Sem. Math. V. A. Steklov Math. Inst. Leningrad5, 60-66 (1969) · Zbl 0194.12805
[14] Leray, J., Sur le mouvement d’un liquide visqueux emplissant l’espace, Acta Math., 63, 193-248, (1934) · JFM 60.0726.05
[15] Prodi, G., Un teorema di unicità per le equazioni di Navier-Stokes, Ann. Mat. Pura Appl., 48, 173-182, (1959) · Zbl 0148.08202
[16] Serrin, J.: The initial value problem for the Navier-Stokes equations. Nonlinear Problems. Proceedings Symposium, Madison, Wisconsin. University of Wisconsin Press, Madison, Wisconsin, 69-98, 1963
[17] Wahl, W., Regularity of weak solutions of the Navier-Stokes equations, Proc. Symp. Pure Appl. Math., 45, 497-503, (1986)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.