×

Anisotropic \(L^2\)-estimates of weak solutions to the stationary Oseen-type equations in 3D-exterior domain for a rotating body. (English) Zbl 1186.35163

Summary: We study the Oseen problem with rotational effect in exterior three-dimensional domains. Using a variational approach we prove existence and uniqueness theorems in anisotropically weighted Sobolev spaces in the whole three-dimensional space. As the main tool we derive and apply an inequality of the Friedrichs-Poincaré type and the theory of Calderon-Zygmund kernels in weighted spaces. For the extension of results to the case of exterior domains we use a localization procedure.

MSC:

35Q35 PDEs in connection with fluid mechanics
35B45 A priori estimates in context of PDEs
76E07 Rotation in hydrodynamic stability
76M30 Variational methods applied to problems in fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] R. Farwig, A variational approach in weighted Sobolev spaces to the operator \(-\triangle+\partial/\partial x_{1}\) in exterior domains of \(\mbi{R}^{3}\), Math. Z., 210 (1992), 449-464. · Zbl 0727.35041
[2] R. Farwig, The stationary exterior 3-D problem of Oseen and Navier-Stokes equations in anisotropically weighted Sobolev spaces, Math. Z., 211 (1992), 409-447. · Zbl 0727.35106
[3] R. Farwig, An \(L^{q}\)-analysis of viscous fluid flow past a rotating obstacle, Tôhoku Math. J. (2), 58 (2006), 129-147. · Zbl 1136.76340
[4] R. Farwig, Estimates of lower order derivatives of viscous fluid flow past a rotating obstacle, Banach Center Publ., 70 (2005), 73-84. · Zbl 1101.35348
[5] R. Farwig, T. Hishida and D. Müller, \(L^{q}\)-Theory of a singular “winding” integral operator arising from fluid dynamics, Pacific J. Math., 215 (2004), 297-312. · Zbl 1057.35028
[6] R. Farwig and T. Hishida, Stationary Navier-Stokes flow around a rotating obstacles, Funkcial. Ekvac., 50 (2007), 371-403. · Zbl 1180.35408
[7] R. Farwig, M. Krbec and Š. Nečasová, A weighted \(L^{q}\)-approach to Stokes flow around a rotating body, Ann. Univ. Ferrara Sez. VII Sci. Mat., 54 (2008), 61-84. · Zbl 1248.35158
[8] R. Farwig, M. Krbec and Š. Nečasová, A weighted \(L^{q}\)-approach to Oseen flow around a rotating body, accepted in Math. Methods Appl. Sci. · Zbl 1224.76034
[9] R. Finn, Estimates at infinity for stationary solution of Navier-Stokes equations, Bull. Math. Soc. Sci. Math. Phys. R. P. Roumaine (N.S.), 3, 51 (1959), 387-418. · Zbl 0106.39402
[10] R. Finn, On the exterior stationary problem for the Navier-Stokes equations, and associated perturbation problems, Arch. Rational Mech. Anal., 19 (1965), 363-406. · Zbl 0149.44606
[11] G. P. Galdi, On the motion of a rigid body in a viscous liquid: A mathematical analysis with applications, Handbook of Mathematical Fluid Dynamics, 1 , (eds. S. Friedlander and D. Serre), Elsevier, North-Holland, Amsterdam, 2002, pp. 653-791. · Zbl 1230.76016
[12] G. P. Galdi, Steady flow of a Navier-Stokes fluid around a rotating obstacle, Essays and papers dedicated to the memory of Clifford Ambrose Truesdell III, II , J. Elasticity, 71 (2003), 1-31. · Zbl 1156.76367
[13] G. P. Galdi and A. L. Silvestre, On the steady motion of a Navier-Stokes liquid around a rigid body, Arch. Ration. Mech. Anal., 184 (2007), 371-400. · Zbl 1111.76010
[14] G. P. Galdi and A. L. Silvestre, Further results on steady-state flow of a Navier-Stokes liquid around a rigid body, Existence of the wake, RIMS Kôkyûroku Bessatsu, B1, Res. Inst. Math. Sci., Kyoto, 2007, pp. 127-143. · Zbl 1119.76011
[15] M. Geissert, H. Heck and M. Hieber, \(L^{p}\) theory of the Navier-Stokes flow in the exterior of a moving or rotating obstacle, J. Reine Angew. Math., 596 (2006), 45-62. · Zbl 1102.76015
[16] V. Girault and P.-A. Raviart, Finite element approximation of the Navier-Stokes equations, Lecture Notes in Mathematics, 749 , Springer-Verlag, Berlin, Heidelberg, New York, 1979. · Zbl 0413.65081
[17] T. Hishida, The Stokes operator with rotation effect in exterior domains, Analysis (Munich), 19 (1999), 51-67. · Zbl 0938.35114
[18] T. Hishida, An existence theorem for the Navier-Stokes flow in the exterior of a rotating obstacle, Arch. Ration. Mech. Anal., 150 (1999), 307-348. · Zbl 0949.35106
[19] T. Hishida, \(L^{q}\)-estimates of weak solutions to the stationary Stokes equations around a rotating body, J. Math. Soc. Japan, 58 (2006), 743-767. · Zbl 1184.35241
[20] J.-L. Impagliazzo, Resolution des equations de Navier-Stokes compressibles a l’aide de la methode de decomposition, These de doctorat de l’Universite de Toulon et du Var, 1997.
[21] T. Kobayashi and Y. Shibata, On the Oseen equation in the three-dimensional exterior domains, Math. Ann., 310 (1998), 1-45. · Zbl 0891.35114
[22] H. Kozono and H. Sohr, New a priori estimates for the Stokes equations in exterior domains, Indiana Univ. Math. J., 40 (1991), 1-27. · Zbl 0732.35068
[23] S. Kračmar, Š. Nečasová and P. Penel, Anisotropic \(L^{2}\)-estimates of weak solutions to the stationary Oseen type equations in \(\mbi{R}^{3}\) for a rotating body, RIMS Kôkyûroku Bessatsu, B1, Res. Inst. Math. Sci., Kyoto, 2007, pp. 219-235. · Zbl 1153.35060
[24] S. Kračmar, Š. Nečasová and P. Penel, Remarks on the non-homogeneous Oseen problem arising from modeling of the fluid around a rotating body, Proceedings of the International Conference “Hyperbolic equations”, held in Lyon, France, 2006,
[25] S. Kračmar, A. Novotný and M. Pokorný, Estimates of three dimensional Oseen kernels in weighted \(L^{p}\) spaces, In: Applied Nonlinear Analysis, London-New York, Kluwer Academic, 1999, pp. 281-316. · Zbl 0961.35105
[26] S. Kračmar, A. Novotný and M. Pokorný, Estimates of Oseen kernels in weighted \(L^{p}\) spaces, J. Math. Soc. Japan, 53 (2001), 59-111. · Zbl 0988.76021
[27] S. Kračmar and P. Penel, Variational properties of a generic model equation in exterior 3D domains, Funkcial. Ekvac., 47 (2004), 499-523. · Zbl 1114.35053
[28] S. Kračmar and P. Penel, New regularity results for a generic model equation in exterior 3D domains, Banach Center Publ., 70 (2005), 139-155. · Zbl 1101.35350
[29] Š. Nečasová, Asymptotic properties of the steady fall of a body in a viscous fluid, Math. Methods Appl. Sci., 27 (2004), 1969-1995. · Zbl 1174.76306
[30] C. W. Oseen, Neuere Methoden und Ergebnisse in der Hydrodynamik, Leipzig, Akad. Verlagsges. M.B.H., 1927. · JFM 53.0773.02
[31] H. Sohr, The Navier-Stokes Equations: An Elementary Functional Analytic Approach, Berlin, Birkhäuser, 2001. · Zbl 0983.35004
[32] E. A. Thomann and R. B. Guenther, The fundamental solution of the linearized Navier-Stokes equations for spinning bodies in three spatial dimensions,–,time dependent case, J. Math. Fluid Mech., 8 (2006), 77-98. · Zbl 1125.35076
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.