zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Conservation laws of high-order nonlinear PDEs and the variational conservation laws in the class with mixed derivatives. (English) Zbl 1186.35189
Summary: The construction of conserved vectors using Noether’s theorem via a knowledge of a Lagrangian (or via the recently developed concept of partial Lagrangians) is well known. The formulas to determine these for higher order flows are somewhat cumbersome but peculiar and become more so as the order increases. We carry out these for a class of high-order partial differential equations from mathematical physics and then consider some specific ones with mixed derivatives. In the latter set of examples, our main focus is that the resultant conserved flows display some previously unknown interesting ’divergence properties’ owing to the presence of the mixed derivatives. Overall, we consider a large class of equations of interest and construct some new conservation laws.

35Q53KdV-like (Korteweg-de Vries) equations
35Q51Soliton-like equations
35K05Heat equation
35K10Second order parabolic equations, general
Full Text: DOI