×

A hybrid extragradient viscosity approximation method for solving equilibrium problems and fixed point problems of infinitely many nonexpansive mappings. (English) Zbl 1186.47065

From the summary: We introduce a new hybrid extragradient viscosity approximation method for finding the common element of the set of equilibrium problems, the set of solutions of fixed points of infinitely many nonexpansive mappings, and the set of solutions of the variational inequality problem for a \(\beta \)-inverse-strongly monotone mapping in Hilbert spaces. Then, we prove the strong convergence of the proposed iterative scheme to the unique solution of a variational inequality, which is the optimality condition for a minimization problem.

MSC:

47J25 Iterative procedures involving nonlinear operators
47H09 Contraction-type mappings, nonexpansive mappings, \(A\)-proper mappings, etc.
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] Takahashi W: Nonlinear Functional Analysis, Fixed Point Theory and Its Application. Yokohama, Yokohama, Japan; 2000:iv+276. · Zbl 0997.47002
[2] Ceng L-C, Yao J-C: Relaxed viscosity approximation methods for fixed point problems and variational inequality problems.Nonlinear Analysis: Theory, Methods & Applications 2008,69(10):3299-3309. 10.1016/j.na.2007.09.019 · Zbl 1163.47052 · doi:10.1016/j.na.2007.09.019
[3] Ceng L-C, Cubiotti P, Yao J-C: An implicit iterative scheme for monotone variational inequalities and fixed point problems.Nonlinear Analysis: Theory, Methods & Applications 2008,69(8):2445-2457. 10.1016/j.na.2007.08.023 · Zbl 1170.47040 · doi:10.1016/j.na.2007.08.023
[4] Ceng L-C, Yao J-C: An extragradient-like approximation method for variational inequality problems and fixed point problems.Applied Mathematics and Computation 2007,190(1):205-215. 10.1016/j.amc.2007.01.021 · Zbl 1124.65056 · doi:10.1016/j.amc.2007.01.021
[5] Ceng L-C, Petruşel A, Yao J-C: Weak convergence theorem by a modified extragradient method for nonexpansive mappings and monotone mappings.Fixed Point Theory 2008,9(1):73-87. · Zbl 1223.47072
[6] Shang, M.; Su, Y.; Qin, X., A general iterative method for equilibrium problems and fixed point problems in Hilbert spaces, No. 2007, 6 (2007) · Zbl 1158.47317
[7] Browder FE, Petryshyn WV: Construction of fixed points of nonlinear mappings in Hilbert space.Journal of Mathematical Analysis and Applications 1967, 20: 197-228. 10.1016/0022-247X(67)90085-6 · Zbl 0153.45701 · doi:10.1016/0022-247X(67)90085-6
[8] Liu F, Nashed MZ: Regularization of nonlinear Ill-posed variational inequalities and convergence rates.Set-Valued Analysis 1998,6(4):313-344. 10.1023/A:1008643727926 · Zbl 0924.49009 · doi:10.1023/A:1008643727926
[9] Rockafellar RT: On the maximality of sums of nonlinear monotone operators.Transactions of the American Mathematical Society 1970, 149: 75-88. 10.1090/S0002-9947-1970-0282272-5 · Zbl 0222.47017 · doi:10.1090/S0002-9947-1970-0282272-5
[10] Ceng L-C, Al-Homidan S, Ansari QH, Yao J-C: An iterative scheme for equilibrium problems and fixed point problems of strict pseudo-contraction mappings.Journal of Computational and Applied Mathematics 2009,223(2):967-974. 10.1016/j.cam.2008.03.032 · Zbl 1167.47307 · doi:10.1016/j.cam.2008.03.032
[11] Ceng L-C, Yao J-C: Hybrid viscosity approximation schemes for equilibrium problems and fixed point problems of infinitely many nonexpansive mappings.Applied Mathematics and Computation 2008,198(2):729-741. 10.1016/j.amc.2007.09.011 · Zbl 1151.65058 · doi:10.1016/j.amc.2007.09.011
[12] Ceng L-C, Schaible S, Yao JC: Implicit iteration scheme with perturbed mapping for equilibrium problems and fixed point problems of finitely many nonexpansive mappings.Journal of Optimization Theory and Applications 2008,139(2):403-418. 10.1007/s10957-008-9361-y · Zbl 1163.47051 · doi:10.1007/s10957-008-9361-y
[13] Ceng L-C, Yao J-C: A hybrid iterative scheme for mixed equilibrium problems and fixed point problems.Journal of Computational and Applied Mathematics 2008,214(1):186-201. 10.1016/j.cam.2007.02.022 · Zbl 1143.65049 · doi:10.1016/j.cam.2007.02.022
[14] Kumam P P: Strong convergence theorems by an extragradient method for solving variational inequalities and equilibrium problems in a Hilbert space.Turkish Journal of Mathematics 2009, 33: 85-98. · Zbl 1223.47083
[15] Peng J-W, Yao J-C: A new hybrid-extragradient method for generalized mixed equilibrium problems, fixed point problems and variational inequality problems.Taiwanese Journal of Mathematics 2008,12(6):1401-1432. · Zbl 1185.47079
[16] Peng J-W, Yao J-C: A modified CQ method for equilibrium problems, fixed points and variational inequality.Fixed Point Theory 2008,9(2):515-531. · Zbl 1172.47051
[17] Flåm SD, Antipin AS: Equilibrium programming using proximal-like algorithms.Mathematical Programming 1997,78(1):29-41. · Zbl 0890.90150 · doi:10.1007/BF02614504
[18] Korpelevič GM: An extragradient method for finding saddle points and for other problems.Èkonomika i Matematicheskie Metody 1976,12(4):747-756. · Zbl 0342.90044
[19] Takahashi W, Toyoda M: Weak convergence theorems for nonexpansive mappings and monotone mappings.Journal of Optimization Theory and Applications 2003,118(2):417-428. 10.1023/A:1025407607560 · Zbl 1055.47052 · doi:10.1023/A:1025407607560
[20] Iiduka H, Takahashi W: Strong convergence theorems for nonexpansive mappings and inverse-strongly monotone mappings.Nonlinear Analysis: Theory, Methods & Applications 2005,61(3):341-350. 10.1016/j.na.2003.07.023 · Zbl 1093.47058 · doi:10.1016/j.na.2003.07.023
[21] Deutsch F, Yamada I: Minimizing certain convex functions over the intersection of the fixed point sets of nonexpansive mappings.Numerical Functional Analysis and Optimization 1998,19(1-2):33-56. · Zbl 0913.47048 · doi:10.1080/01630569808816813
[22] Xu H-K: Iterative algorithms for nonlinear operators.Journal of the London Mathematical Society 2002,66(1):240-256. 10.1112/S0024610702003332 · Zbl 1013.47032 · doi:10.1112/S0024610702003332
[23] Xu H-K: An iterative approach to quadratic optimization.Journal of Optimization Theory and Applications 2003,116(3):659-678. 10.1023/A:1023073621589 · Zbl 1043.90063 · doi:10.1023/A:1023073621589
[24] Yamada, I.; Butnariu, D. (ed.); Censor, Y. (ed.); Reich, S. (ed.), The hybrid steepest descent method for the variational inequality problem over the intersection of fixed point sets of nonexpansive mappings, No. 8, 473-504 (2001), Amsterdam, The Netherlands · Zbl 1013.49005 · doi:10.1016/S1570-579X(01)80028-8
[25] Marino G, Xu H-K: A general iterative method for nonexpansive mappings in Hilbert spaces.Journal of Mathematical Analysis and Applications 2006,318(1):43-52. 10.1016/j.jmaa.2005.05.028 · Zbl 1095.47038 · doi:10.1016/j.jmaa.2005.05.028
[26] Plubtieng S, Punpaeng R: A general iterative method for equilibrium problems and fixed point problems in Hilbert spaces.Journal of Mathematical Analysis and Applications 2007,336(1):455-469. 10.1016/j.jmaa.2007.02.044 · Zbl 1127.47053 · doi:10.1016/j.jmaa.2007.02.044
[27] Wangkeeree, R., An extragradient approximation method for equilibrium problems and fixed point problems of a countable family of nonexpansive mappings, No. 2008, 17 (2008) · Zbl 1170.47051
[28] Colao V, Marino G, Xu H-K: An iterative method for finding common solutions of equilibrium and fixed point problems.Journal of Mathematical Analysis and Applications 2008,344(1):340-352. 10.1016/j.jmaa.2008.02.041 · Zbl 1141.47040 · doi:10.1016/j.jmaa.2008.02.041
[29] Opial Z: Weak convergence of the sequence of successive approximations for nonexpansive mappings.Bulletin of the American Mathematical Society 1967, 73: 591-597. 10.1090/S0002-9904-1967-11761-0 · Zbl 0179.19902 · doi:10.1090/S0002-9904-1967-11761-0
[30] Blum E, Oettli W: From optimization and variational inequalities to equilibrium problems.The Mathematics Student 1994,63(1-4):123-145. · Zbl 0888.49007
[31] Shimoji K, Takahashi W: Strong convergence to common fixed points of infinite nonexpansive mappings and applications.Taiwanese Journal of Mathematics 2001,5(2):387-404. · Zbl 0993.47037
[32] Yao, Y.; Liou, Y-C; Yao, J-C, Convergence theorem for equilibrium problems and fixed point problems of infinite family of nonexpansive mappings, No. 2007, 12 (2007) · Zbl 1153.54024
[33] Suzuki T: Strong convergence of Krasnoselskii and Mann’s type sequences for one-parameter nonexpansive semigroups without Bochner integrals.Journal of Mathematical Analysis and Applications 2005,305(1):227-239. 10.1016/j.jmaa.2004.11.017 · Zbl 1068.47085 · doi:10.1016/j.jmaa.2004.11.017
[34] Xu H-K: Viscosity approximation methods for nonexpansive mappings.Journal of Mathematical Analysis and Applications 2004,298(1):279-291. 10.1016/j.jmaa.2004.04.059 · Zbl 1061.47060 · doi:10.1016/j.jmaa.2004.04.059
[35] Qin X, Shang M, Su Y: A general iterative method for equilibrium problems and fixed point problems in Hilbert spaces.Nonlinear Analysis: Theory, Methods & Applications 2008,69(11):3897-3909. 10.1016/j.na.2007.10.025 · Zbl 1170.47044 · doi:10.1016/j.na.2007.10.025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.