zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Strong convergence of modified Ishikawa iterations for nonlinear mappings. (English) Zbl 1186.47078
Summary: In this paper, we prove a strong convergence theorem of modified Ishikawa iterations for relatively asymptotically nonexpansive mappings in Banach space. Our results extend and improve recent results by Nakajo, Takahashi, Kim, Xu, Matsushita and some others.

47J25Iterative procedures (nonlinear operator equations)
47H09Mappings defined by “shrinking” properties
Full Text: DOI arXiv
[1] Alber Ya I, Metric and generalized projection operators in Banach spaces: Properties and applications, in: Theory and Applications of Nonlinear Operators of Accretive and Monotone Type (ed.) A G Kartsatos, (New York: Marcel Dekker) (1996) 15--50
[2] Alber Ya I and Reich S, An iterative method for solving a class of nonlinear operatore-quations in Banach spaces, Panamer. Math. J. 4 (1994) 39--54 · Zbl 0851.47043
[3] Alber Ya and Guerre-Delabriere S, On the projection methods for fixed point problems, Analysis 21 (2001) 17--39 · Zbl 0985.47044
[4] Butnariu D, Reich S and Zaslavski A J, Asymptotic behavior of relatively nonexpansive operators in Banach spaces, J. Appl. Anal. 7 (2001) 151--174 · Zbl 1010.47032 · doi:10.1515/JAA.2001.151
[5] Butnariu D, Reich S and Zaslavski A J, Weak convergence of orbits of nonlinear operators in reflexive Banach spaces, Numer. Funct. Anal. Optim. 24 (2003) 489--508 · Zbl 1071.47052 · doi:10.1081/NFA-120023869
[6] Censor Y and Reich S, Iterations of paracontractions and firmly nonexpansive operators with applications to feasibility and optimization, Optimization 37 (1996) 323--339 · Zbl 0883.47063 · doi:10.1080/02331939608844225
[7] Chidume C E and Mutangadura S A, An example on the Mann iteration method for Lipschitz pseudocontractions, Proc. Am. Math. Soc. 129 (2001) 2359--2363 · Zbl 0972.47062 · doi:10.1090/S0002-9939-01-06009-9
[8] Cioranescu I, Geometry of Banach spaces, duality mappings and nonlinear problems, (Dordrecht: Kluwer) (1990)
[9] Genel A and Lindenstrass J, An example concerning fixed points, Israel J. Math. 22 (1975) 81--86 · Zbl 0314.47031
[10] Goebel K and Kirk W A, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Am. Math. Soc. 35 (1972) 171--174 · Zbl 0256.47045 · doi:10.1090/S0002-9939-1972-0298500-3
[11] Ishikawa S, Fixed points by a new iteration method, Proc. Am. Math. Soc. 44 (1974) 147--150 · Zbl 0286.47036 · doi:10.1090/S0002-9939-1974-0336469-5
[12] Kamimura S and Takahashi W, Strong convergence of a proximal-type algorithm in a Banach space, SIAM J. Optim. 13 (2002) 938--945 · Zbl 1101.90083 · doi:10.1137/S105262340139611X
[13] Kim T H and Xu H K, Strong convergence of modified mann iterations for asymptotically nonexpansive mappings and semigroups, Nonlinear Anal. 64 (2006) 1140--1152 · Zbl 1090.47059 · doi:10.1016/j.na.2005.05.059
[14] Mann W R, Mean value methods in iteration, Proc. Am. Math. Soc. 4 (1953) 506--510 · Zbl 0050.11603 · doi:10.1090/S0002-9939-1953-0054846-3
[15] Nakajo K and Takahashi W, Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups, J. Math. Anal. Appl. 279 (2003) 372--379 · Zbl 1035.47048 · doi:10.1016/S0022-247X(02)00458-4
[16] Reich S, Weak convergence theorems for nonexpansive mappings in Banach spaces, J. Math. Anal. Appl. 67 (1979) 274--276 · Zbl 0423.47026 · doi:10.1016/0022-247X(79)90024-6
[17] Reich S, A weak convergence theorem for the alternating method with Bregman distance, in: Theory and Applications of Nonlinear Operators of Accretive and Monotone Type (ed.) A G Kartsatos (New York: Marcel Dekker) (1996) 313--318
[18] Takahashi W, Nonlinear Functional Analysis (Yokohama-Publishers) (2000)
[19] Yanes C Martinez and Xu H K, Strong convergence of the CQ method for fixed point iteration processes, Nonlinear Anal. 64 (2006) 2400--2411 · Zbl 1105.47060 · doi:10.1016/j.na.2005.08.018