On times to quasi-stationarity for birth and death processes. (English) Zbl 1186.60086

Authors’ abstract: The purpose of this paper is to present a probabilistic proof of the well-known result stating that the time needed by a continuous-time finite birth and death process for going from the left end to the right end of its state space is a sum of independent exponential variables whose parameters are the negatives of the eigenvalues of the underlying generator when the right end is treated as an absorbing state. The exponential variables appear as fastest strong quasi-stationary times for successive dual processes associated to the original absorbed process. As an aftermath, we get an interesting probabilistic representation of the time marginal laws of the process in terms of “local equilibria”.


60J80 Branching processes (Galton-Watson, birth-and-death, etc.)
60J27 Continuous-time Markov processes on discrete state spaces
60J35 Transition functions, generators and resolvents
37A30 Ergodic theorems, spectral theory, Markov operators
15A18 Eigenvalues, singular values, and eigenvectors
Full Text: DOI


[1] Aldous, D., Diaconis, P.: Shuffling cards and stopping times. Am. Math. Mon. 93(5), 333–348 (1986) · Zbl 0603.60006
[2] Aldous, D., Diaconis, P.: Strong uniform times and finite random walks. Adv. Appl. Math. 8(1), 69–97 (1987) · Zbl 0631.60065
[3] Aldous, D., Fill, J.A.: Reversible Markov Chains and Random Walks on Graphs. Monograph in preparation, available on the web site: http://www.stat.berkeley.edu/\(\sim\)aldous/RWG/book.html . (1994–2002)
[4] Bovier, A., Eckhoff, M., Gayrard, V., Klein, M.: Metastability and low lying spectra in reversible Markov chains. Commun. Math. Phys. 2285(2), 219–255 (2002) · Zbl 1010.60088
[5] Carmona, P., Petit, F., Yor, M.: Beta–gamma random variables and intertwining relations between certain Markov processes. Rev. Mat. Iberoam. 14(2), 311–367 (1998) · Zbl 0919.60074
[6] Diaconis, P.: Group Representations in Probability and Statistics. Institute of Mathematical Statistics Lecture Notes–Monograph Series, vol. 11. Institute of Mathematical Statistics, Hayward (1988) · Zbl 0695.60012
[7] Diaconis, P., Fill, J.A.: Strong stationary times via a new form of duality. Ann. Probab. 18(4), 1483–1522 (1990) · Zbl 0723.60083
[8] Diaconis, P., Saloff-Coste, L.: Separation cut-offs for birth and death chains. Ann. Appl. Probab. 16(4), 2098–2122 (2006) · Zbl 1127.60081
[9] Fill, J.A.: Strong stationary duality for continuous-time Markov chains. I. Theory. J. Theor. Probab. 5(1), 45–70 (1992) · Zbl 0746.60075
[10] Fill, J.A.: The passage time distribution for a birth-and-death chain: Strong stationary duality gives a first stochastic proof. J. Theor. Probab. (2009). doi: 10.1007/s10959-009-0235-5 · Zbl 1178.60054
[11] Fill, J.A.: On hitting times and fastest strong stationary times for skip-free and more general chains. J. Theor. Probab. (2009.) doi: 10.1007/s10959-009-0233-7 · Zbl 1173.60337
[12] Kac, M.: Random walk and the theory of Brownian motion. Am. Math. Mon. 54, 369–391 (1947) · Zbl 0031.22604
[13] Karlin, S., McGregor, J.: Coincidence properties of birth and death processes. Pac. J. Math. 9, 1109–1140 (1959) · Zbl 0097.34102
[14] Keilson, J.: Log-concavity and log-convexity in passage time densities of diffusion and birth–death processes. J. Appl. Probab. 8, 391–398 (1971) · Zbl 0248.60063
[15] Keilson, J.: Markov Chain Models–Rarity and Exponentiality. Applied Mathematical Sciences, vol. 28. Springer, New York (1979) · Zbl 0411.60068
[16] Kent, J.T.: The spectral decomposition of a diffusion hitting time. Ann. Probab. 10(1), 207–219 (1982) · Zbl 0483.60075
[17] Kent, J.T.: The appearance of a multivariate exponential distribution in sojourn times for birth–death and diffusion processes. In: Probability, Statistics and Analysis. London Math. Soc. Lecture Note Ser., vol. 79, pp. 161–179. Cambridge Univ. Press, Cambridge (1983) · Zbl 0509.60086
[18] Lovász, L., Winkler, P.: Mixing times. In: Microsurveys in Discrete Probability, Princeton, 1997. DIMACS Ser. Discrete Math. Theor. Comput. Sci., vol. 41, pp. 85–133. Am. Math. Soc., Providence (1998) · Zbl 0908.60065
[19] Matthews, P.: Strong stationary times and eigenvalues. J. Appl. Probab. 29(1), 228–233 (1992) · Zbl 0759.60071
[20] Micchelli, C.A., Willoughby, R.A.: On functions which preserve the class of Stieltjes matrices. Linear Algebra Appl. 23, 141–156 (1979) · Zbl 0405.15011
[21] Miclo, L.: Comportement de spectres d’opérateurs de Schrödinger à basse température. Bull. Sci. Math. 119(6), 529–553 (1995) · Zbl 0840.60057
[22] Miclo, L.: Sur les problèmes de sortie discrets inhomogènes. Ann. Appl. Probab. 6(4), 1112–1156 (1996) · Zbl 0870.60062
[23] Miclo, L.: On eigenfunctions of Markov processes on trees. Preprint, available on http://hal.ccsd.cnrs.fr/ccsd-00147865 (2007) · Zbl 1149.60059
[24] Pak, I.: Random walks on groups: Strong uniform time approach. Ph.D. thesis, Dept. of Mathematics, Harvard University, available on http://math.mit.edu/\(\sim\)pak/research.html (1997)
[25] Rogers, C., Pitman, J.: Markov functions. Ann. Probab. 9(4), 573–582 (1981) · Zbl 0466.60070
[26] Seneta, E.: Quasi-stationary distributions and time-reversion in genetics. (With discussion). J. R. Stat. Soc. Ser. B 28, 253–277 (1966) · Zbl 0149.17401
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.