[1] |
Baker, C.T.H., Buckwar, E.: Exponential stability in p-th mean of solutions, and of convergent Euler-type solutions, to stochastic delay differential equations. J. Computat. Appl. Math. (to appear) · Zbl 1081.65011 |

[2] |
Burrage, K., Burrage, P.M., Tian, T.: Numerical methods for strong solutions of stochastic differential equations: an overview. Proceedings: Mathematical, Physical and Engineering, Royal Society of London 460, 373--402 (2004) · Zbl 1048.65004
· doi:10.1098/rspa.2003.1247 |

[3] |
Cont, R., Tankov, P.: Financial Modelling With Jump Processes. Chapman & Hall/CRC, Florida (2004) · Zbl 1052.91043 |

[4] |
Cyganowski, S., Grüne, L., Kloeden, P.E.: MAPLE for jump-diffusion stochastic differential equations in finance. In: Programming Languages and Systems in Computational Economics and Finance, S.S. Nielsen (ed.), Kluwer, Boston (2002), pp. 441--460 |

[5] |
Dekker, K., Verwer, J.G.: Stability of Runge--Kutta Methods for Stiff Nonlinear Equations. North Holland, Amsterdam (1984) · Zbl 0571.65057 |

[6] |
Gardoń, A.: The order of approximation for solutions of Itô-type stochastic differential equations with jumps. Stochastic Anal. Appl. 22, 679--699 (2004) · Zbl 1056.60065
· doi:10.1081/SAP-120030451 |

[7] |
Gikhman, I.I., Skorokhod, A.V.: Stochastic Differential Equations. Springer-Verlag, Berlin (1972) · Zbl 0169.48702 |

[8] |
Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. Springer-Verlag, Berlin, second ed. (1996) · Zbl 0859.65067 |

[9] |
Higham, D.J., Kloeden, P.E.: Convergence and stability of implicit methods for jump-diffusion systems. International Journal of Numerical Analysis & Modeling (to appear) · Zbl 1109.65007 |

[10] |
Higham, D.J., Mao, X., Stuart, A.M.: Strong convergence of Euler-like methods for nonlinear stochastic differential equations. SIAM J. Numer. Anal. 40, 1041--1063 (2002) · Zbl 1026.65003
· doi:10.1137/S0036142901389530 |

[11] |
Higham, D.J., Mao, X., Stuart, A.M.: Exponential mean square stability of numerical solutions to stochastic differential equations. London Mathematical Society J. Comput. Math. 6, 297--313 (2003) · Zbl 1055.65009 |

[12] |
Hu, Y.: Semi-implicit Euler-Maruyama scheme for stiff stochastic equations. In: Stochastic Analysis and Related Topics, V; The Silivri Workshop, Progr. Probab., 38, H. Koerezlioglu, (ed.), Birkhauser, Boston (1996), pp. 183--202 · Zbl 0848.60057 |

[13] |
Maghsoodi, Y.: Mean square efficient numerical solution of jump-diffusion stochastic differential equations. Indian J. Statistics 58, 25--47 (1996) · Zbl 0881.60057 |

[14] |
Maghsoodi, Y.: Exact solutions and doubly efficient approximations and simulation of jump-diffusion Ito equations. Stochastic Anal. Appl. 16, 1049--1072 (1998) · Zbl 0920.60041
· doi:10.1080/07362999808809579 |

[15] |
Mao, X.: Stability of Stochastic Differential Equations with respect to Semimartingales. Longman Scientific and Technical, Pitman Research Notes in Mathematics Series 251 (1991) · Zbl 0724.60059 |

[16] |
Mattingly, J., Stuart, A.M., Higham, D.J.: Ergodicity for SDEs and approximations: Locally Lipschitz vector fields and degenerate noise. Stochastic Processes and their Appl. 101, 185--232 (2002) · Zbl 1075.60072
· doi:10.1016/S0304-4149(02)00150-3 |

[17] |
Milstein, G.N., Tretyakov, M.V.: Numerical integration of stochastic differential equations with nonglobally Lipschitz coefficients. SIAM J. Numer. Anal. (to appear) · Zbl 1102.60059 |

[18] |
Schurz, H.: Stability, Stationarity, and Boundedness of some Implicit Numerical Methods for Stochastic Differential Equations and Applications. Logos Verlag (1997) · Zbl 0905.60002 |

[19] |
Sobczyk, K.: Stochastic Differential Equations with Applications to Physics and Engineering. Kluwer Academic, Dordrecht (1991) · Zbl 0762.60050 |

[20] |
Stuart, A.M., Humphries, A.R.: Dynamical Systems and Numerical Analysis. Cambridge University Press, Cambridge (1996) · Zbl 0869.65043 |