zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Least squares solution with the minimum-norm to general matrix equations via iteration. (English) Zbl 1186.65047
Two iterative algorithm are presented to solve the minimal norm least squares solution to a general linear matrix equations including the well-known Sylvester matrix equation and Lyapunov matrix equation as special cases. The first algorithm is based on the gradient based searching principle and the other one can be viewed as its dual. Necessary and sufficient conditions for the step sizes in these two algorithms are proposed to guarantee the convergence of the algorithms for arbitrary initial conditions.

65F20Overdetermined systems, pseudoinverses (numerical linear algebra)
65F30Other matrix algorithms
15A24Matrix equations and identities
Full Text: DOI
[1] Bhattacharyya, S. P.; De Souza, E.: Pole assignment via Sylvester’s equation, Systems and control letters 1, 261-263 (1972) · Zbl 0473.93037 · doi:10.1016/S0167-6911(82)80009-1
[2] R. Byers, N. Rhee, Cyclic Schur and Hessenberg -- Schur numerical methods for solving periodic Lyapunov and Sylvester equations. Technical Report, Dept. of Mathematics, Univ. of Missouri at Kansas City, 1995.
[3] Byers, R.: Solving the algebraic Riccati equation with the matrix sign function, Linear algebra and its applications 85, 267-279 (1987) · Zbl 0611.65027 · doi:10.1016/0024-3795(87)90222-9
[4] Chen, J. L.; Chen, X. H.: Special matrices, (2002)
[5] Desouza, E.; Bhattacharyya, S. P.: Controllability, observability and the solution of AX-XB=C, Linear algebra and its applications 39, 167-188 (1981) · Zbl 0468.15012 · doi:10.1016/0024-3795(81)90301-3
[6] Ding, F.; Chen, T.: Iterative least squares solutions of coupled Sylvester matrix equations, Systems and control letters 54, No. 2, 95-107 (2005) · Zbl 1129.65306 · doi:10.1016/j.sysconle.2004.06.008
[7] Ding, F.; Chen, T.: Gradient based iterative algorithms for solving a class of matrix equations, IEEE transactions on automatic control 50, No. 8, 1216-1221 (2005)
[8] Ding, F.; Chen, T.: On iterative solutions of general coupled matrix equations, SIAM journal on control and optimization 44, No. 6, 2269-2284 (2006) · Zbl 1115.65035 · doi:10.1137/S0363012904441350
[9] Ding, F.; Liu, P. X.; Ding, J.: Iterative solutions of the generalized Sylvester matrix equations by using the hierarchical identification principle, Applied mathematics and computation 197, No. 1, 41-50 (2008) · Zbl 1143.65035 · doi:10.1016/j.amc.2007.07.040
[10] Doyle, J. C.; Glover, K.; Khargonekar, P. P.; Francis, B. A.: State-space solutions to standard H2 and H$\infty $ control problems, IEEE transactions on automatic control 34, No. 8, 831-847 (1989) · Zbl 0698.93031 · doi:10.1109/9.29425
[11] Duan, G. R.: Solutions to matrix equation AV+BW=VF and their application to eigenstructure assignment in linear systems, IEEE transactions on automatic control 38, No. 2, 276-280 (1993) · Zbl 0775.93098 · doi:10.1109/9.250470
[12] Duan, G. R.: On the solution to Sylvester matrix equation AV+BW=EVF, IEEE transactions on automatic control 41, No. 4, 612-614 (1996) · Zbl 0855.93017 · doi:10.1109/9.489286
[13] Huang, G. X.; Yin, F.; Guo, K.: An iterative method for the skew-symmetric solution and the optimal approximate solution of the matrix equation AXB=C, Journal of computational and applied mathematics 212, No. 2, 231-244 (2008) · Zbl 1146.65036 · doi:10.1016/j.cam.2006.12.005
[14] Kailath, T.: Linear systems, (1980) · Zbl 0454.93001
[15] Z. Li, Y. Wang, Iterative algorithm for minimal norm least squares solution to general linear matrix equations, International Journal of Computer Mathematics, doi:10.1080/00207160802684459. · Zbl 1203.65080
[16] Cman, Adem Kılı; Zhour, Zeyad Abdel Aziz Al: Vector least-squares solutions for coupled singular matrix equations, Journal of computational and applied mathematics 206, 1051-1069 (2007) · Zbl 1132.65034 · doi:10.1016/j.cam.2006.09.009
[17] Piao, F.; Zhang, Q.; Wang, Z.: The solution to matrix equation AX+XTC=B, Journal of the franklin institute 344, No. 8, 1056-1062 (2007) · Zbl 1171.15015 · doi:10.1016/j.jfranklin.2007.05.002
[18] Peng, X. Y.; Hu, X. Y.; Zhang, L.: The reflexive and anti-reflexive solutions of the matrix equation AHXB=C, Journal of computational and applied mathematics 200, No. 2, 749-760 (2007) · Zbl 1115.15014 · doi:10.1016/j.cam.2006.01.024
[19] Peng, Z. H.; Hu, X. Y.; Zhang, L.: An effective algorithm for the least-squares reflexive solution of the matrix equation A1XB1=C1,A2XB2=C2, Applied mathematics and computation 181, 988-999 (2006) · Zbl 1115.65048 · doi:10.1016/j.amc.2006.01.071
[20] Qiu, Y. Y.; Zhang, Z. Y.; Lu, J. F.: Matrix iterative solutions to the least squares problem of BXAT=F with some linear constraints, Applied mathematics and computation 185, 284-300 (2007) · Zbl 1117.65056 · doi:10.1016/j.amc.2006.06.097
[21] Wang, M. H.; Cheng, X. H.; Wei, M. H.: Iterative algorithms for solving the matrix equation AXB+CXTD=E, Applied mathematics and computation 187, No. 2, 622-629 (2007) · Zbl 1121.65048 · doi:10.1016/j.amc.2006.08.169
[22] Wang, Q.; Lam, J.; Wei, Y.; Chen, T.: Iterative solutions of coupled discrete Markovian jump Lyapunov equations, Computers and mathematics with applications 55, No. 4, 843-850 (2008) · Zbl 1139.60334 · doi:10.1016/j.camwa.2007.04.031
[23] Zhou, K.; Doyle, J.; Glover, K.: Robust and optimal control, (1996) · Zbl 0999.49500