zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A multilayered neuro-fuzzy classifier with self-organizing properties. (English) Zbl 1186.68419
Summary: A novel self-organizing neuro-fuzzy multilayered classifier (SONeFMUC) is suggested in this paper which is composed of small-scale interconnected fuzzy neuron classifiers (FNCs) arranged in layers. The model provides a different perspective for generating a new class of hierarchical classifiers with multilevel classifiers combination. At each layer, parent FNCs are combined to construct a descendant FNC at the next layer with enhanced classification qualities. The generic FNCs exhibit an original structure including four modules: (1) The fuser aggregates the decision support outputs of the parent FNCs using a fusion operator. (2) The data splitting module divides data into correctly classified patterns with high degree of confidence which are handled by the fuser and ambiguous ones. (3) The last two modules are realized by fuzzy rule-based systems and implement a neuro-fuzzy classifier within each FNC, used to improve the classification accuracy of ambiguous patterns. The former performs feature transformations to an intermediate output space while the latter provides the decision supports of non-confident patterns. Unlike traditional classifiers, the classification mapping is accomplished in SONeFMUC by performing successive decision fusions and feature transformations. SONeFMUC structure is determined sequentially via a self-constructing learning algorithm. Structure learning inherently implements feature selection, considering the most informative attributes as model inputs. To improve classification accuracy, the models obtained after structure learning are optimized using a parameter learning scheme based on genetic algorithms. The effectiveness of our approach is tested on a set of benchmark classification problems. Experimental results show that the proposed neuro-fuzzy classifier is favorably compared to other well-known classification techniques of the literature.

MSC:
68T10Pattern recognition, speech recognition
68T05Learning and adaptive systems
Software:
UCI-ml
WorldCat.org
Full Text: DOI
References:
[1] Benediktsson, J. A.; Kanellopoulos, I.: Classification of multisource and hyperspectral data based on decision fusion, IEEE trans. Geosci. remote sensing 37, No. 3, 1367-1377 (1999)
[2] Benediktsson, J. A.; Swain, P. H.: Consensus theoretic classification methods, IEEE trans. Systems man cybernet. 22, No. 4, 688-704 (1992) · Zbl 0775.62149 · doi:10.1109/21.156582
[3] Bezdek, J. C.: Pattern recognition with fuzzy objective function algorithms, (1981) · Zbl 0503.68069
[4] Z. Bingul, A. Sekmen, S. Zein-Sabbato, Evolutionary approach to multi-objective problems using adaptive genetic algorithms, in: Proc. 2000 IEEE Internet. Conf. on Systems Man and Cybernetics, TN, USA, 8 -- 11 October 2000, pp. 1923 -- 1927.
[5] Cai, L. Y.; Kwan, H. K.: Fuzzy classification using fuzzy inference networks, IEEE trans. Systems man cybernet. (Part B) 28, No. 3, 334-347 (1998)
[6] Casillas, J.; Cordon, O.; Del Jesus, M. J.; Herrera, F.: Genetric feature selection in a fuzzy rule-based classification system learning process for high-dimensional problems, Inform. sci. 136, No. 1, 135-157 (2001) · Zbl 0996.68158 · doi:10.1016/S0020-0255(01)00147-5
[7] Castellano, G.; Fanalli, A. M.; Mencar, C.: An empirical risk functional to improve learning in a neuro-fuzzy classifier, IEEE trans. Systems man cybernet. 34, No. 1, 725-731 (2004)
[8] Cho, S. -B.; Kim, J. H.: Combining multiple neural networks by fuzzy integral for robust classification, IEEE trans. Systems man cybernet. 25, No. 2, 380-384 (1995)
[9] Cordon, O.; Del Jesus, M. J.; Herrera, F.: Genetic learning of fuzzy rule-based classification cooperating with fuzzy reasoning methods, Internat. J. Intell. systems 13, No. 10 -- 11, 1025-1053 (1998)
[10] O. Cordon, F. Herrera, F. Hoffmann, L. Magdalena, Genetic fuzzy systems: evolutionary tuning and learning of fuzzy knowledge bases, in: Advances in Fuzzy Systems, World Scientific, Singapore, 2001. · Zbl 1042.68098
[11] Del Jesus, M. J.; Hoffmann, F.; Navascues, L. J.; Sanchez, L.: Induction of fuzzy-rule-based classifiers with evolutionary boosting algorithms, IEEE trans. On fuzzy systems 12, No. 3, 296-308 (2004)
[12] Delivopoulos, E.; Theocharis, J. B.: A modified PNN algorithm with optimal PD modeling using the orthogonal least squares method, Inform. sci. 168, No. 1 -- 4, 133-170 (2004) · Zbl 1078.68695 · doi:10.1016/j.ins.2004.02.001
[13] Drucker, H.; Cortes, C.; Jackel, L. D.; Lecun, Y.; Vapnik, V.: Boosting and other ensemble methods, Neural comput. 6, No. 6, 1289-1301 (1994) · Zbl 0939.68791 · doi:10.1162/neco.1994.6.6.1289
[14] Goncalves, L. B.; Velasco, M. M. B.R.; Pacheco, M. A. C.; De Souza, F. J.: Inverted hierarchical neuro-fuzzy BSP system: a novel neuro-fuzzy model for pattern classification and rule extraction in databases, IEEE trans. Systems man cybernet. (Part C) 36, No. 2, 236-248 (2006)
[15] Gonzalez, A.; Perez, R.: Selection of relevant features in a fuzzy genetic learning algorithm, IEEE trans. Systems man cybernet. (Part B) 31, No. 3, 417-425 (2001)
[16] Ho, S. -Y.; Chen, H. -M.; Ho, S. -J.; Chen, T. -K.: Design of accurate classifiers with compact fuzzy-rule base using an evolutionary scatter partition of feature space, IEEE trans. Systems man cybernet. (Part B) 34, No. 2, 1031-1044 (2004)
[17] Hoffmann, F.: Combining boosting and evolutionary algorithms for learning of fuzzy classification rules, Fuzzy sets and systems 141, No. 1, 47-58 (2004) · Zbl 1081.68084 · doi:10.1016/S0165-0114(03)00113-1
[18] Ishibuchi, H.; Nakashima, T.; Murata, T.: Performance evaluation of fuzzy classifier systems for multidimensional pattern classification problems, IEEE trans. Systems man cybernet. (Part B) 29, No. 5, 601-618 (1999)
[19] Ivaknenko, A. G.: Polynomial theory of complex systems, IEEE trans. Systems man cybernet. 1, 364-368 (1971)
[20] Kittler, J.; Hatef, M.; Duin, R. P. W.; Matas, J.: On combining classifiers, IEEE trans. Pattern anal. Mach intell. 20, No. 3, 226-239 (1998)
[21] Kuncheva, L. I.; Bezdek, J. C.; Duin, R. P. W.: Decision templates for multiple classifier fusion: an experimental comparison, Pattern recognition 34, No. 2, 299-314 (2001) · Zbl 0991.68064 · doi:10.1016/S0031-3203(99)00223-X
[22] P.M. Murphy, D.W. Aha, UCI repository of machine learning databases, University of California, Department of Information and Computer Science, Irvine, CA \langle http://www.ics.uci.edu/-mlearn/MLRepository.htm\rangle , 1998.
[23] Nauck, D.; Kruse, R.: A neuro-fuzzy method to learn fuzzy classification rules from data, Fuzzy sets and systems 89, No. 3, 277-288 (1997)
[24] Oh, S. -K.; Pedrycz, W.: The design of self-organizing polynomial neural networks, Inform. sci. 141, No. 3, 237-258 (2002) · Zbl 1008.68098 · doi:10.1016/S0020-0255(02)00175-5
[25] Oh, S. -K.; Pedrycz, W.; Ahn, T. -C.: Self-organizing neural networks with fuzzy polynomial neurons, Appl. soft comput. 2, No. 1, 1-10 (2002)
[26] Papadakis, S. E.; Theocharis, J. B.: A GA-based fuzzy modeling approach for generating TSK models, Fuzzy sets and systems 131, No. 2, 121-152 (2002) · Zbl 1010.93500 · doi:10.1016/S0165-0114(01)00227-5
[27] Rutkowski, L.; Cpalka, K.: Flexible neuro-fuzzy systems, IEEE trans. Neural networks 14, No. 3, 554-574 (2003)
[28] Setnes, M.; Roubos, H.: GA-fuzzy modeling and classification: complexity and performance, IEEE trans. Fuzzy systems 8, No. 5, 509-522 (2000)
[29] Takagi, T.; Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control, IEEE trans. Systems man cybernet. 15, No. 1, 116-132 (1985) · Zbl 0576.93021
[30] Wang, J. -S.; Lee, C. S. G.: Self-adaptive neuro-fuzzy inference systems for classification applications, IEEE trans. Fuzzy systems 10, No. 6, 790-802 (2002)
[31] Woods, K.; Kegelmeyer, W. P.; Browyer, K.: Combination of multiple classifiers using local accuracy estimates, IEEE trans. Pattern anal. Mach intell. 19, 405-410 (1994)
[32] Zhang, C. -X.; Zhang, J. -S.: A local boosting algorithm for solving classification problems, Comput. statist. Data anal. 38, No. 4, 1928-1941 (2008)