zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Propositional logics from rough set theory. (English) Zbl 1186.68446
Peters, James F. (ed.) et al., Transactions on Rough Sets VI. Commemorating life and work of Zdisł aw Pawlak, Part I. Berlin: Springer (ISBN 978-3-540-71198-8/pbk). Lecture Notes in Computer Science 4374. Journal Subline, 1-25 (2007).
Summary: The article focusses on propositional logics with semantics based on rough sets. Many approaches to rough sets (including generalizations) have come to the fore since the inception of the theory, and resulted in different “rough logics” as well. The essential idea behind these logics is, quite naturally, to interpret well-formed formulae as rough sets in (generalized) approximation spaces. The syntax, in most cases, consists of modal operators along with the standard Boolean connectives, in order to reflect the concepts of lower and upper approximations. Non-Boolean operators make appearances in some cases too. Information systems (“complete” and “incomplete”) have always been the “practical” source for approximation spaces. Characterization theorems have established that a rough set semantics based on these “induced” spaces, is no different from the one mentioned above. We also outline some other logics related to rough sets, e.g. logics of information systems -- which, in particular, feature expressions corresponding to attributes in their language. These systems address various issues, such as the temporal aspect of information, multiagent systems, rough relations. An attempt is made here to place this gamut of work, spread over the last 20 years, in one platform. We present the various relationships that emerge and indicate questions that surface. For the entire collection see [Zbl 1115.68005].

68T27Logic in artificial intelligence
68T37Reasoning under uncertainty
03B60Other nonclassical logic
Full Text: DOI