×

Migrativity of aggregation functions. (English) Zbl 1186.68459

Summary: We introduce a slight modification of the definition of migrativity for aggregation functions that allows useful characterization of this property. Among other things, in this context we prove that there are no \(t\)-conorms, uninorms or nullnorms that satisfy migrativity (with the product being the only migrative \(t\)-norm, as already shown by other authors) and that the only migrative idempotent aggregation function is the geometric mean. The \(k\)-Lipschitz migrative aggregation functions are also characterized and the product is shown to be the only 1-Lipschitz migrative aggregation function. Similarly, it is the only associative migrative aggregation function possessing a neutral element. Finally, the associativity and bisymmetry of migrative aggregation functions are discussed.

MSC:

68T37 Reasoning under uncertainty in the context of artificial intelligence
Full Text: DOI

References:

[1] Alsina, C.; Frank, M. J.; Schweizer, B., Associative Functions: Triangular Norms and Copulas (2006), World Scientific: World Scientific Hackensack, NJ · Zbl 1100.39023
[2] Amo, A.; Montero, J.; Molina, E., Representation of consistent recursive rules, Europ. J. Oper. Res., 130, 29-53 (2001) · Zbl 1137.03322
[3] G. Beliakov, A. Pradera, T. Calvo (Eds.), Aggregation Functions: A Guide for Practitioners, Springer, Berlin, 2007.; G. Beliakov, A. Pradera, T. Calvo (Eds.), Aggregation Functions: A Guide for Practitioners, Springer, Berlin, 2007. · Zbl 1123.68124
[4] Bustince, H.; Burillo, P.; Soria, F., Automorphisms, negations and implication operators, Fuzzy Sets and Systems, 134, 209-229 (2003) · Zbl 1010.03017
[5] Calvo, T.; De Baets, B.; Fodor, J., The functional equations of Frank and Alsina for uninorms and nullnorms, Fuzzy Sets and Systems, 120, 385-394 (2001) · Zbl 0977.03026
[6] Calvo, T.; Kolesárová, A.; Komorníková, M.; Mesiar, R., Aggregation operators: properties, classes and construction methods, (Calvo, T.; Mayor, G.; Mesiar, R., Aggregation Operators New Trends and Applications (2002), Physica-Verlag: Physica-Verlag Heidelberg), 3-104 · Zbl 1039.03015
[7] Cutello, V.; Montero, J., Recursive connective rules, Internat. J. Intell. Systems, 14, 3-20 (1999) · Zbl 0955.68103
[8] De Baets, B., Uninorms: the known classes, (Ruan, D.; Abderrahim, H. A.; D’hondt, P.; Kerre, E. E., Fuzzy Logic and Intelligent Technologies for Nuclear Science and Industry (1998), World Scientific: World Scientific Singapore), 21-28
[9] De Baets, B., Idempotent uninorms, Europ. J. Oper. Res., 118, 631-642 (1999) · Zbl 0933.03071
[10] Dubois, D.; Ostasiewicz, W.; Prade, H., Fuzzy Sets, history and basic notions, (Dubois, D.; Prade, H., Fundamentals of Fuzzy Sets (2000), Kluwer: Kluwer Boston, MA), 21-124 · Zbl 0967.03047
[11] Durante, F.; Sarkoci, P., A note on the convex combinations of triangular norms, Fuzzy Sets and Systems, 159, 77-80 (2008) · Zbl 1173.03042
[12] Fodor, J.; Roubens, M., Fuzzy Preference Modelling and Multicriteria Decision Support (1994), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht · Zbl 0827.90002
[13] Fodor, J.; Rudas, I. J., On continuous triangular norms that are migrative, Fuzzy Sets and Systems, 158, 1692-1697 (2007) · Zbl 1120.03035
[14] Gómez, D.; Montero, J., A discussion on aggregation operators, Kybernetika, 40, 107-120 (2004) · Zbl 1249.68229
[15] Klement, E. P.; Mesiar, R.; Pap, E., Triangular Norms (2000), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht · Zbl 0972.03002
[16] Klir, G. J.; Folger, T. A., Fuzzy Sets, Uncertainty and Information (1988), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ · Zbl 0675.94025
[17] Mesiar, R.; Novák, V., Open problems from the 2nd International Conference of fuzzy sets theory and its applications, Fuzzy Sets and Systems, 81, 185-190 (1996) · Zbl 0877.04003
[18] Montero, J.; Gómez, D.; Muñoz, S., Fuzzy information representation for decision aiding, (Proc. of the IPMU Conference. Proc. of the IPMU Conference, Málaga, Spain (June 22-27, 2008))
[19] Montero, J.; López, V.; Gómez, D., The role of fuzziness in decision making, (Ruan, D.; etal., Fuzzy Logic: A Spectrum of Applied and Theoretical Issues (2007), Springer: Springer Berlin), 337-349
[20] Roy, B., Decision sciences or decision aid sciences, Europ. J. Oper. Res., 66, 184-203 (1993)
[21] B. Schweizerd, A. Sklar, Probabilistic Metric Spaces, North-Holland, Amsterdam, 1983; Dover Publications, Mineola, NY, 2006.; B. Schweizerd, A. Sklar, Probabilistic Metric Spaces, North-Holland, Amsterdam, 1983; Dover Publications, Mineola, NY, 2006. · Zbl 0546.60010
[22] Yager, R.; Rybalov, A., Uninorm aggregation operators, Fuzzy Sets and Systems, 80, 111-120 (1996) · Zbl 0871.04007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.