×

Two statistical models for predicting collision rates of inertial particles in homogeneous isotropic turbulence. (English) Zbl 1186.76598

Editorial remark: No review copy delivered.

MSC:

76-XX Fluid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Squires, Phys. Fluids A 3 pp 1169– (1991)
[2] Wang, J. Fluid Mech. 256 pp 27– (1993)
[3] Sundaram, J. Fluid Mech. 335 pp 75– (1997)
[4] Reade, Phys. Fluids 12 pp 2530– (2000)
[5] Wang, J. Fluid Mech. 415 pp 117– (2000)
[6] Hogan, Phys. Fluids 13 pp 2938– (2001)
[7] P. Février, O. Simonin, and D. Legendre, ”Particle dispersion and preferential concentration dependence on turbulent Reynolds number from direct and large-eddy simulations of isotropic homogeneous turbulence,” Proceedings of the Fourth International Conference on Multiphase Flow, New Orleans, 2001.
[8] Elperin, Phys. Rev. E 66 pp 036302– (2002)
[9] Saffman, J. Fluid Mech. 1 pp 16– (1956)
[10] Abrahamson, Chem. Eng. Sci. 30 pp 1371– (1975)
[11] Williams, Int. J. Multiphase Flow 9 pp 421– (1983)
[12] Kruis, J. Aerosol Sci. 27 pp 263– (1996)
[13] Yuu, AIChE J. 30 pp 802– (1984)
[14] Derevich, Fluid Dyn. 31 pp 104– (1996)
[15] Wang, Phys. Fluids 10 pp 2647– (1998)
[16] J. O. Hinze,Turbulence(McGraw-Hill, New York, 1975).
[17] Zhou, Phys. Fluids 10 pp 1206– (1998)
[18] J. Laviéville, E. Deutsch, and O. Simonin, ”Large eddy simulation of interactions between colliding particles and a homogeneous isotropic turbulence field,” Proceedings of Sixth International Symposium on Gas-Particle Flows, ASME FED, 1995, Vol. 228, pp. 347–357.
[19] J. Laviéville, ”Numerical simulations and modeling of interactions between turbulence dragging and interparticle collisions applied to gas-solid two-phase flows,” Thèse de Doctorat de l’Université de Rouen, 1997.
[20] O. Simonin, ”Combustion and turbulence in two-phase flows: Continuum modelling of dispersed two-phase flows,” Lecture Series 1996-02, Von Karman Institute for Fluid Dynamics, 1996.
[21] P. Fede, O. Simonin, and P. Villedieu, ”Monte Carlo simulation of colliding particles in gas-solid turbulent flows from a joint fluid-particle PDF equation,” Proceedings of the Fifth International Symposium on Numerical Methods for Multiphase Flows, ASME Fluids Engineering Summer Meeting, FEDSM2002-31226, 2002.
[22] Zaichik, Phys. Fluids 15 pp 1776– (2003)
[23] Derevich, Appl. Math. Mech. 54 pp 722– (1990)
[24] Zaichik, Phys. Fluids 11 pp 1521– (1999)
[25] Reeks, J. Fluid Mech. 83 pp 529– (1977)
[26] Wang, J. Atmos. Sci. 50 pp 1897– (1993)
[27] A. S. Monin and A. M. Yaglom,Statistical Fluid Mechanics: Mechanics of Turbulence, Vol. 2(MIT Press, Cambridge, 1975).
[28] Sawford, Phys. Fluids A 3 pp 1577– (1991)
[29] Yeung, J. Fluid Mech. 207 pp 531– (1989)
[30] Vedula, Phys. Fluids 11 pp 1208– (1999)
[31] Voth, Phys. Fluids 10 pp 2268– (1998)
[32] Yeung, Phys. Fluids 9 pp 2981– (1997)
[33] Yeung, J. Fluid Mech. 427 pp 241– (2001)
[34] Zaichik, Thermophys. Aeromech. 6 pp 493– (1999)
[35] Chen, Int. J. Multiphase Flow 24 pp 1105– (1998)
[36] Sawford, Phys. Fluids 13 pp 2627– (2001)
[37] Simonin, J. Turbulence 3 pp 40– (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.