zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A note on observer design for one-sided Lipschitz nonlinear systems. (English) Zbl 1186.93017
Summary: Observer design of a class of nonlinear systems is considered. Based on the one-sided Lipschitz condition, sufficient conditions for the existence of observers of the class of nonlinear systems are presented. A design method of the observer that is dependent on the solution of the linear matrix inequality is then presented. Furthermore, a gain matrix of the observer is given. The method given in this note makes the applicable class larger than that given in the literature. It should be noticed that the proposed method is applicable not only to the monotone nonlinearities and Lipschitz nonlinearities but also to the one-sided Lipschitz nonlinearities which are neither monotone nonlinearities nor usual Lipschitz nonlinearities. Finally, we use the proposed method to design observers for three simulative examples and the effect of each state trajectory tracking is very satisfactory.

MSC:
93B07Observability
93C15Control systems governed by ODE
93C10Nonlinear control systems
WorldCat.org
Full Text: DOI
References:
[1] Krener, A. J.; Isidori, A.: Linearization by output injection and non-linear obserners, Systems control lett. 3, No. 3, 47-52 (1983) · Zbl 0524.93030 · doi:10.1016/0167-6911(83)90037-3
[2] Xiao, X. H.; Gao, W.: Nonlinear observer design by observer error linearilization, SIAM J. Control optim. 27, No. 1, 199-216 (1989) · Zbl 0667.93014 · doi:10.1137/0327011
[3] Zemouche, A.; Boutayeb, M.; Bara, G. I.: Observers for a class of Lipschitz systems with extension to H1 performance analysis, Systems control lett. 57, No. 1, 18-27 (2008) · Zbl 1129.93006 · doi:10.1016/j.sysconle.2007.06.012
[4] Thau, F. E.: Observing the state of nonlinear dynamic systems, Internat. J. Control 17, No. 3, 471-480 (1973) · Zbl 0249.93006 · doi:10.1080/00207177308932395
[5] Zhu, F.; Han, Z.: A note on observers for Lipschitz nonlinear systems, IEEE trans. Automat. control 47, No. 10, 1751-1754 (2002)
[6] Hu, G. D.: Observers for one-sided Lipschitz non-linear systems, IMA J. Math. control inform. 23, 395-401 (2006) · Zbl 1113.93021
[7] Arcak, M.; Kokotovic, P.: Nonlinear observers: A circle criterion design and robustness analysis, Automatica 37, 1923-1930 (2001) · Zbl 0996.93010 · doi:10.1016/S0005-1098(01)00160-1
[8] Rajamani, R.: Observer for Lipschitz nonlinear systems, IEEE trans. Automat. control 43, 397-401 (1998) · Zbl 0905.93009 · doi:10.1109/9.661604
[9] Rajamani, R.; Cho, Y. M.: Existence and design of observers for non-linear systems: relation to distance to unobservability, Internat. J. Control 69, No. 5, 717-731 (1998) · Zbl 0933.93019 · doi:10.1080/002071798222640
[10] Raghavan, S.; Hedrick, J. Karla: Observer design for a class of non-linear systems, Internat. J. Control 59, No. 2, 515-528 (1994) · Zbl 0802.93007 · doi:10.1080/00207179408923090
[11] Dekker, K.; Verwer, J. G.: Stability of Runge--Kutta methods for stiff nonlinear differential equations, (1984) · Zbl 0571.65057
[12] Peterson, I. H.; Hollot, C. V.: A ricatti equation approach to the stabilization of uncertain linear systems, Automatica 22, 397-411 (1986) · Zbl 0602.93055 · doi:10.1016/0005-1098(86)90045-2